Probabilistic Approximation of the Evolution Operator

被引:4
|
作者
Ibragimov, I. A. [1 ,2 ]
Smorodina, N. V. [1 ,2 ]
Faddeev, M. M. [1 ,2 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, St Petersburg Dept, St Petersburg, Russia
[2] St Petersburg State Univ, St Petersburg, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
evolution equation; limit theorem; Feynman-Kac formula; CAUCHY-PROBLEM; EQUATION;
D O I
10.1007/s10688-018-0216-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for approximation of the operator e (-itH) , where , in the strong operator topology is proposed. The approximating operators have the form of expectations of functionals of a certain random point field.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 50 条
  • [1] Probabilistic Approximation of the Evolution Operator
    I. A. Ibragimov
    N. V. Smorodina
    M. M. Faddeev
    [J]. Functional Analysis and Its Applications, 2018, 52 : 101 - 112
  • [2] Probabilistic Approximation of the Evolution Operator e-itH where
    Platonova, M., V
    Tcykin, S., V
    [J]. DOKLADY MATHEMATICS, 2020, 101 (02) : 144 - 146
  • [3] A Probabilistic Approximation of the Evolution Operator exp (t (S∇, ∇)) with a Complex Matrix S
    Ibragimov I.A.
    Smorodina N.V.
    Faddeev M.M.
    [J]. Journal of Mathematical Sciences, 2020, 244 (5) : 789 - 795
  • [4] Algebraic method for the evolution operator approximation
    Mikhailova, TY
    Pupyshev, VI
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (18): : 4263 - 4275
  • [6] A note on the approximation of Shenoy's expectation operator using probabilistic transforms
    Jirousek, R.
    Kratochvil, V
    Rauh, J.
    [J]. INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2020, 49 (01) : 48 - 63
  • [7] APPROXIMATION OF GENERALIZED BOUNDED SOLUTIONS OF EVOLUTION EQUATIONS WITH UNBOUNDED OPERATOR
    Pokutnyi, O. O.
    [J]. NONLINEAR OSCILLATIONS, 2011, 14 (01): : 95 - 101
  • [8] Probabilistic approximation of solutions of the cauchy problem for some evolution equations
    Ibragimov I.A.
    Smorodina N.V.
    Faddeev M.M.
    [J]. Journal of Mathematical Sciences, 2013, 188 (6) : 700 - 716
  • [9] A Probabilistic Approximation of the Cauchy Problem Solution for the Schrödinger Equation with a Fractional Derivative Operator
    Platonova M.V.
    Tsykin S.V.
    [J]. Journal of Mathematical Sciences, 2020, 244 (5) : 874 - 884
  • [10] APPROXIMATION OF THE EVOLUTION OPERATOR BY EXPECTATIONS OF FUNCTIONALS OF SUMS OF INDEPENDENT RANDOM VARIABLES
    Ibragimov, I. A.
    Smorodina, N., V
    Faddeev, M. M.
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 2019, 64 (01) : 12 - 26