Toward a Visual Concept Vocabulary for GAN Latent Space

被引:1
|
作者
Schwettmann, Sarah [1 ]
Hernandez, Evan [2 ]
Bau, David [2 ]
Klein, Samuel [3 ]
Andreas, Jacob [2 ]
Torralba, Antonio [2 ]
机构
[1] MIT, BCS, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, CSAIL, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, KFG, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
D O I
10.1109/ICCV48922.2021.00673
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A large body of recent work has identified transformations in the latent spaces of generative adversarial networks (GANs) that consistently and interpretably transform generated images. But existing techniques for identifying these transformations rely on either a fixed vocabulary of prespecified visual concepts, or on unsupervised disentanglement techniques whose alignment with human judgments about perceptual salience is unknown. This paper introduces a new method for building open-ended vocabularies of primitive visual concepts represented in a GAN's latent space. Our approach is built from three components: (1) automatic identification of perceptually salient directions based on their layer selectivity; (2) human annotation of these directions with free-form, compositional natural language descriptions; and (3) decomposition of these annotations into a visual concept vocabulary, consisting of distilled directions labeled with single words. Experiments show that concepts learned with our approach are reliable and composable-generalizing across classes, contexts, and observers, and enabling fine-grained manipulation of image style and content.
引用
收藏
页码:6784 / 6792
页数:9
相关论文
共 50 条
  • [1] CLIP2GAN: Toward Bridging Text With the Latent Space of GANs
    Wang, Yixuan
    Zhou, Wengang
    Bao, Jianmin
    Wang, Weilun
    Li, Li
    Li, Houqiang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (08) : 6847 - 6859
  • [2] IMAGE ORIENTATION BY EMBEDDING IN A GAN LATENT SPACE
    Kniaz, V. V.
    Knyaz, V. A.
    Mizginov, V
    Bordodymov, A.
    Moshkantsev, P.
    Barylnik, S.
    Novikov, D.
    OPTICAL 3D METROLOGY (O3DM), 2022, 48-2 (W2): : 142 - 148
  • [3] A framework for moderate vocabulary semantic visual concept detection
    Naphade, MR
    Lin, CY
    Natsev, A
    Tseng, BL
    Smith, JR
    2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I, PROCEEDINGS, 2003, : 437 - 440
  • [4] Visual Servoing in Autoencoder Latent Space
    Felton, Samuel
    Brault, Pascal
    Fromont, Elisa
    Marchand, Eric
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) : 3234 - 3241
  • [5] Latent Space Clustering via Dual Discriminator GAN
    He, Heng-Ping
    Li, Pei-Zhen
    Huang, Ling
    Ji, Yu-Xuan
    Wang, Chang-Dong
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT I, 2020, 12112 : 671 - 679
  • [6] Exploring The Optimal Visual Vocabulary Sizes for Semantic Concept Detection
    Guo, Jinlin
    Qiu, Zhengwei
    Gurrin, Cathal
    2013 11TH INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI 2013), 2013, : 109 - 114
  • [7] Concept-Specific Visual Vocabulary Construction for Object Categorization
    Zhang, Chunjie
    Liu, Jing
    Ouyang, Yi
    Lu, Hanqing
    Ma, Songde
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2009, 2009, 5879 : 936 - 942
  • [8] Latent Space Cartography: Visual Analysis of Vector Space Embeddings
    Liu, Yang
    Jun, Eunice
    Li, Qisheng
    Heer, Jeffrey
    COMPUTER GRAPHICS FORUM, 2019, 38 (03) : 67 - 78
  • [9] Constructing visual models with a latent space approach
    Monay, Florent
    Quelhas, Pedro
    Gatica-Perez, Daniel
    Odobez, Jean-Marc
    SUBSPACE, LATENT STRUCTURE AND FEATURE SELECTION, 2006, 3940 : 115 - 126
  • [10] A CRITIQUE OF CONTEMPORARY CONCEPT OF VISUAL SPACE AND VISUAL-PHYSICAL SPACE DICHOTOMIES
    PERKINS, RB
    AMERICAN JOURNAL OF OPTOMETRY AND ARCHIVES OF AMERICAN ACADEMY OF OPTOMETRY, 1969, 46 (10): : 755 - &