Intelligent Second-Order Sliding-Mode Control for Chaotic Tracking Problem

被引:0
|
作者
Hsu, Chun-Fei [1 ]
Lee, Tsu-Tian [2 ]
Chang, Chun-Wei [1 ]
机构
[1] Tamkang Univ, Dept Elect Engn, New Taipei City, Taiwan
[2] Chung Yuan Christian Univ, Dept Elect Engn, Chungli, Taiwan
关键词
neural network control; sliding-mode control; recurrent fuzzy neural network; Lyapunov function; WAVELET NEURAL-NETWORK; NONLINEAR-SYSTEMS; MOTOR; PERFORMANCE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The behavior of a chaotic dynamic system is extremely sensitive to the system parameters and initial conditions. In this paper, a recurrent fuzzy neural network (RFNN) is used to online approximate the unknown nonlinear term of chaotic system dynamics with a good accuracy. Meanwhile, an intelligent second-order sliding-mode control (ISSMC) system is proposed for a chaotic dynamic system with high accuracy tracking response. A neural controller and a robust compensator are designed in the proposed ISSMC system. Because of the ISSMC system uses integration method to obtain the actual control signal, the chattering phenomenon can be removed effectively. Further, the controller parameter adaptation laws are derived based on the Lyapunov function, so that the system stability of the closed-loop system can be guaranteed. Finally, the proposed ISSMC method is successfully applied to the chaotic tracking control problem.
引用
收藏
页码:62 / +
页数:3
相关论文
共 50 条
  • [1] Second-order sliding-mode control of container cranes
    Bartolini, G
    Pisano, A
    Usai, E
    [J]. AUTOMATICA, 2002, 38 (10) : 1783 - 1790
  • [2] Second-order sliding-mode control of DC drives
    Damiano, A
    Gatto, GL
    Marongiu, I
    Pisano, A
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2004, 51 (02) : 364 - 373
  • [3] Perturbed Unicycle Mobile Robots: A Second-Order Sliding-Mode Trajectory Tracking Control
    Rios, Hector
    Mera, Manuel
    Polyakov, Andrey
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (03) : 2864 - 2872
  • [4] On second-order sliding-mode control of fractional-order dynamics
    Pisano, A.
    Rapaic, M. R.
    Jelicic, Z. D.
    Usai, E.
    [J]. 2010 AMERICAN CONTROL CONFERENCE, 2010, : 6680 - 6685
  • [5] Second-order integral sliding-mode control with experimental application
    Furat, Murat
    Eker, Ilyas
    [J]. ISA TRANSACTIONS, 2014, 53 (05) : 1661 - 1669
  • [6] Wheel Slip Control via Second-Order Sliding-Mode Generation
    Amodeo, Matteo
    Ferrara, Antonella
    Terzaghi, Riccardo
    Vecchio, Claudio
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2010, 11 (01) : 122 - 131
  • [7] Vehicle Yaw Control via Second-Order Sliding-Mode Technique
    Canale, Massimo
    Fagiano, Lorenzo
    Ferrara, Antonella
    Vecchio, Claudio
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2008, 55 (11) : 3908 - 3916
  • [8] Second-order sliding-mode observer for mechanical systems
    Davila, J
    Fridman, L
    Levant, A
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) : 1785 - 1789
  • [9] Robust control for propofol induced anesthesia based on second-order sliding-mode control
    Gallardo Hernandez, Ana Gabriela
    Fridman, Leonid
    Eslava Escobar, Aldo
    Davila, Jorge
    Leder, Ron
    Revilla Monsalve, Cristina
    Islas Andrade, Sergio
    Luisa Hernandez, Ana
    [J]. 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2864 - 2869
  • [10] Delta modulation (Δ-M) via second-order sliding-mode control technique
    Pilloni, A.
    Franceschelli, M.
    Pisano, A.
    Usai, E.
    [J]. CONTROL ENGINEERING PRACTICE, 2019, 92