Finding closest targets in non-oriented DEA models: The case of convex and non-convex technologies

被引:123
|
作者
Portela, MCAS
Borges, PC
Thanassoulis, E
机构
[1] Univ Catolica Portuguesa, P-4169005 Porto, Portugal
[2] Aston Business Sch, P-4169005 Porto, Portugal
[3] Aston Business Sch, Birmingham B4 7ET, W Midlands, England
关键词
DEA; FDH; non-oriented efficiency measures; quad trees;
D O I
10.1023/A:1022813702387
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper draws attention for the fact that traditional Data Envelopment Analysis (DEA) models do not provide the closest possible targets (or peers) to inefficient units, and presents a procedure to obtain such targets. It focuses on non-oriented efficiency measures (which assume that production units are able to control, and thus change, inputs and outputs simultaneously) both measured in relation to a Free Disposal Hull (FDH) technology and in relation to a convex technology. The approaches developed for finding close targets are applied to a sample of Portuguese bank branches.
引用
收藏
页码:251 / 269
页数:19
相关论文
共 50 条
  • [1] Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies
    Maria Conceição A. Silva Portela
    Pedro Castro Borges
    Emmanuel Thanassoulis
    Journal of Productivity Analysis, 2003, 19 : 251 - 269
  • [2] Finding the Closest Efficient Targets in DEA by a Numeration Method: The FDH Non-Convex Technology
    Vakili, J.
    Dizaji, R. Sadighi
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2023, 41
  • [3] Duality theory of non-convex technologies
    Kuosmanen, T
    JOURNAL OF PRODUCTIVITY ANALYSIS, 2003, 20 (03) : 273 - 304
  • [4] Duality Theory of Non-convex Technologies
    Timo Kuosmanen
    Journal of Productivity Analysis, 2003, 20 : 273 - 304
  • [5] Nesting of non-convex figures in non-convex contours
    Vinade, C.
    Dias, A.
    Informacion Tecnologica, 2000, 11 (01): : 149 - 156
  • [6] A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity
    Zhu, Qingyuan
    Wu, Jie
    Ji, Xiang
    Li, Feng
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2018, 79 : 1 - 8
  • [7] GRADIENT MODELS WITH NON-CONVEX INTERACTIONS
    Adams, Stefan
    XVITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2010, : 352 - 356
  • [8] Convex non-convex image segmentation
    Raymond Chan
    Alessandro Lanza
    Serena Morigi
    Fiorella Sgallari
    Numerische Mathematik, 2018, 138 : 635 - 680
  • [9] Comments on convex and non-convex figures
    Tietze, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1929, 160 (1/4): : 67 - 69
  • [10] Convex and Non-convex Flow Surfaces
    Bolchoun, A.
    Kolupaev, V. A.
    Altenbach, H.
    FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2011, 75 (02): : 73 - 92