Tutte type theorems for graphs having a perfect internal matching

被引:7
|
作者
Bartha, M [1 ]
Krész, M
机构
[1] Mem Univ Newfoundland, Dept Comp Sci, St Johns, NF A1B 3X5, Canada
[2] Univ Szeged, Fac Juhasz Gyula Teacher Training Coll, Dept Comp Sci, H-6725 Szeged, Hungary
关键词
combinatorial problems; graph matchings; factor-critical graphs;
D O I
10.1016/j.ipl.2004.05.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Splitters are introduced to capture the meaning of barriers in graphs having a perfect internal matching. The factor-critical property is extended in a natural way to accommodate such graphs, and a characterization of factor-critical graphs is given in the new context. Two Tutte type theorems are presented for open graphs with perfect internal matchings, one on maximal splitters, and the other on maximal inaccessible splitters. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:277 / 284
页数:8
相关论文
共 50 条
  • [1] Structuring the elementary components of graphs having a perfect internal matching
    Bartha, M
    Krész, M
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 299 (1-3) : 179 - 210
  • [2] Splitters and Barriers in Open Graphs Having a Perfect Internal Matching
    Bartha, Miklos
    Kresz, Miklos
    [J]. ACTA CYBERNETICA, 2008, 18 (04): : 697 - 718
  • [3] On the Tutte and Matching Polynomials for Complete Graphs
    Kotek, Tomer
    Makowsky, Johann A.
    [J]. FUNDAMENTA INFORMATICAE, 2022, 186 (1-4) : 155 - 173
  • [4] Unicyclic Graphs with a Perfect Matching Having Signless Laplacian Eigenvalue Two
    Jianxi LI
    Wai Chee SHIU
    [J]. Journal of Mathematical Research with Applications, 2017, 37 (04) : 379 - 390
  • [5] GRAPHS AND MATCHING THEOREMS
    ORE, O
    [J]. DUKE MATHEMATICAL JOURNAL, 1955, 22 (04) : 625 - 639
  • [6] On Graphs with a Unique Perfect Matching
    Xiumei Wang
    Weiping Shang
    Jinjiang Yuan
    [J]. Graphs and Combinatorics, 2015, 31 : 1765 - 1777
  • [7] On Graphs with a Unique Perfect Matching
    Wang, Xiumei
    Shang, Weiping
    Yuan, Jinjiang
    [J]. GRAPHS AND COMBINATORICS, 2015, 31 (05) : 1765 - 1777
  • [8] Bipartite unicyclic graphs with a unique perfect matching having the smallest positive eigenvalue equal to
    Barik, Sasmita
    Behera, Subhasish
    Kirkland, Steve
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2024,
  • [9] MATCHING-PERFECT AND COVER-PERFECT GRAPHS
    LEWIN, M
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1974, 18 (04) : 345 - 347
  • [10] On graphs with perfect internal matchings
    [J]. Acta Cybern, 2 (111):