Uniqueness of moving boundary for a heat conduction problem with nonlinear interface conditions

被引:7
|
作者
Wei, T. [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou, Gansu, Peoples R China
关键词
Inverse boundary problem; Heat equation; Uniqueness; Nonlinear interface conditions; Multilayer domain; CAUCHY DATA; INVERSE; EQUATION;
D O I
10.1016/j.aml.2010.01.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the maximum principle and the unique continuation theorem, we present a uniqueness result for a moving boundary of a heat problem in a multilayer medium with nonlinear interface conditions. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:600 / 604
页数:5
相关论文
共 50 条
  • [1] Heat Flux Estimation in a Nonlinear Inverse Heat Conduction Problem With Moving Boundary
    Molavi, Hosein
    Rahmani, Ramin K.
    Pourshaghaghy, Alireza
    Tashnizi, Ebrahim Sharifi
    Hakkaki-Fard, Ali
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2010, 132 (08): : 1 - 10
  • [2] HEAT FLUX ESTIMATION IN A NONLINEAR INVERSE HEAT CONDUCTION PROBLEM WITH MOVING BOUNDARY
    Molavi, Hosein
    Hakkaki-Fard, Ali
    Pourshaghaghy, Alireza
    Molavi, Mehdi
    Rahmani, Ramin K.
    [J]. HT2009: PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE 2009, VOL 2, 2009, : 929 - 941
  • [3] MOVING BOUNDARY PROBLEM IN HYPERBOLIC HEAT CONDUCTION.
    De Socio, L.M.
    Misici, L.
    [J]. Revue roumaine des sciences techniques. Serie de mecanique appliquee, 1987, 32 (02): : 177 - 187
  • [4] SOLUTION UNIQUENESS FOR HEAT-CONDUCTION NONLINEAR INVERSE PROBLEM
    KRIVOSHEJ, FA
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1977, (08): : 748 - 750
  • [5] THE UNIQUENESS OF THE SOLUTION OF AN INVERSE PROBLEM OF NONLINEAR HEAT-CONDUCTION
    MUZYLEV, NV
    [J]. USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1985, 25 (05): : 43 - 47
  • [6] Identification of a moving boundary for a heat conduction problem in a multilayer medium
    Y. S. Li
    T. Wei
    [J]. Heat and Mass Transfer, 2010, 46 : 779 - 789
  • [7] NONSTATIONARY PROBLEM OF HEAT CONDUCTION WITH ARBITRARY MOVING BOUNDARY.
    Barvinok, V.A.
    Bogdanovich, V.I.
    [J]. Power engineering New York, 1982, 20 (06): : 101 - 108
  • [8] Identification of a moving boundary for a heat conduction problem in a multilayer medium
    Li, Y. S.
    Wei, T.
    [J]. HEAT AND MASS TRANSFER, 2010, 46 (07) : 779 - 789
  • [9] Numerical solution of nonlinear heat problem with moving boundary
    Al-Mannai, Mona
    Khabeev, Nail
    [J]. ACTA ASTRONAUTICA, 2012, 70 : 1 - 5
  • [10] Methods of moving boundary based on artificial boundary in heat conduction direct problem
    Zhang, Xueyan
    Li, Qian
    Gu, Daquan
    Hou, Taiping
    [J]. MECHATRONICS AND INTELLIGENT MATERIALS II, PTS 1-6, 2012, 490-495 : 2282 - 2285