ALGEBRAIC MODELS OF BIOCHEMICAL NETWORKS

被引:0
|
作者
Laubenbacher, Reinhard [1 ]
Jarrah, Abdul Salam [1 ]
机构
[1] Virginia Tech, Virginia Bioinformat Inst, Blacksburg, VA 24061 USA
基金
美国国家卫生研究院;
关键词
GENE REGULATORY NETWORKS; PROBABILISTIC BOOLEAN NETWORKS; TIME-SERIES DATA; EXPRESSION PROFILES; BAYESIAN NETWORKS; SACCHAROMYCES-CEREVISIAE; BIOLOGICAL NETWORKS; RELEVANCE NETWORKS; MICROARRAY DATA; COMPOUND-MODE;
D O I
10.1016/S0076-6879(09)67007-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
With the rise of systems biology as an important paradigm in the life sciences and the availability and increasingly good quality of high-throughput molecular data, the role of mathematical models has become central in the understanding of the relationship between structure and function of organisms. This chapter focuses on a particular type of models, so-called algebraic models, which are generalizations of Boolean networks. It provides examples of such models and discusses several available methods to construct such models from high-throughput time course data. One specific such method, Polynome, is discussed in detail.
引用
收藏
页码:163 / +
页数:35
相关论文
共 50 条
  • [1] Computing Algebraic Functions with Biochemical Reaction Networks
    Buisman, H. J.
    ten Eikelder, H. M. M.
    Hilbers, P. A. J.
    Liekens, A. M. L.
    ARTIFICIAL LIFE, 2009, 15 (01) : 5 - 19
  • [2] Biochemical reaction networks: An invitation for algebraic geometers
    Dickenstein, Alicia
    MATHEMATICAL CONGRESS OF THE AMERICAS, 2016, 656 : 65 - 83
  • [3] Algebraic models for social networks - Pattison,P
    Frank, O
    JOURNAL OF CLASSIFICATION, 1996, 13 (02) : 344 - 346
  • [5] ALGEBRAIC MODELS FOR SOCIAL NETWORKS - PATTISON,P
    MARSDEN, PV
    CONTEMPORARY SOCIOLOGY-A JOURNAL OF REVIEWS, 1995, 24 (05) : 710 - 711
  • [6] STRUCTURAL EQUIVALENCE IN NETWORKS - ALGEBRAIC AND TOPOLOGICAL MODELS
    KAPPELHOFF, P
    KOLNER ZEITSCHRIFT FUR SOZIOLOGIE UND SOZIALPSYCHOLOGIE, 1984, 36 (03): : 464 - 493
  • [7] Algebraic methods for inferring biochemical networks: A maximum likelihood approach
    Craciun, Gheorghe
    Pantea, Casian
    Rempala, Grzegorz A.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2009, 33 (05) : 361 - 367
  • [8] Semigroup models for biochemical reaction networks
    Dimitri Loutchko
    Journal of Mathematical Biology, 2023, 86
  • [9] RMBNToolbox: random models for biochemical networks
    Aho, Tommi
    Smolander, Olli-Pekka
    Niemi, Jari
    Yli-Harja, Olli
    BMC SYSTEMS BIOLOGY, 2007, 1
  • [10] Computational models for inferring biochemical networks
    Rausanu, Silvia
    Grosan, Crina
    Wu, Zujian
    Parvu, Ovidiu
    Stoica, Ramona
    Gilbert, David
    NEURAL COMPUTING & APPLICATIONS, 2015, 26 (02): : 299 - 311