EEG entropy estimation using a Markov model of the EEG for sleep stage separation in human neonates

被引:0
|
作者
Lofgren, Nils A. [1 ]
Outram, Nicholas [2 ]
Thordstein, Magnus [3 ]
机构
[1] Univ Coll Boras, Sch Engn, Boras, Sweden
[2] Univ Plymouth, Sch Comp Commun & Elect, Plymouth PL4 8AA, Devon, England
[3] Sahlgrens Univ Hosp, Inst Neurosci & Physiol, Sect Neurosci & Rehabil, Gothenburg, Sweden
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Entropy calculated on EEG has been shown to be a useful indicator of effects from insufficient oxygen supply. In this paper, the estimation of entropy is based on transition matrices instead of probability density functions. It is shown that the separation of sleep stages thereby can be improved. This suggests that by including time information given by the transition matrix in entropy estimates of the EEG, classification can be improved.
引用
收藏
页码:638 / +
页数:2
相关论文
共 50 条
  • [1] A MARKOV CHAIN MODEL OF SLEEP EEG PATTERNS
    ZUNG, WWK
    NAYLOR, TH
    GIANTURC.D
    WILSON, WP
    ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1965, 19 (01): : 105 - &
  • [2] EEG TRANSIENTS IN THE SLEEP OF HEALTHY NEONATES
    STATZ, A
    DUMERMUTH, G
    SCHWEIZER ARCHIV FUR NEUROLOGIE UND PSYCHIATRIE, 1981, 129 (02): : 223 - 224
  • [3] Classification of human sleep stages based on EEG processing using hidden Markov models
    Doroshenkov L.G.
    Konyshev V.A.
    Selishchev S.V.
    Biomedical Engineering, 2007, 41 (1) : 25 - 28
  • [4] Detection of insomnia using advanced complexity and entropy features of sleep stage data of EEG recordings
    Tiwari S.
    Arora D.
    Nagar V.
    Measurement: Sensors, 2022, 24
  • [5] Diffusion entropy analysis of sleep EEG
    Jernajczyk, W.
    Ignaccolo, M.
    Latka, M.
    West, B. J.
    JOURNAL OF SLEEP RESEARCH, 2008, 17 : 229 - 229
  • [6] Automatic Stage Scoring of Single-Channel Sleep EEG by Using Multiscale Entropy and Autoregressive Models
    Liang, Sheng-Fu
    Kuo, Chin-En
    Hu, Yu-Han
    Pan, Yu-Hsiang
    Wang, Yung-Hung
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (06) : 1649 - 1657
  • [7] Complexity Analysis of Neonatal EEG Using Multiscale Entropy: Applications in Brain Maturation and Sleep Stage Classification
    De Wel, Ofelie
    Lavanga, Mario
    Dorado, Alexander Caicedo
    Jansen, Katrien
    Dereymaeker, Anneleen
    Naulaers, Gunnar
    Van Huffel, Sabine
    ENTROPY, 2017, 19 (10):
  • [8] Topography of EEG complexity in human neonates:: Effect of the postmenstrual age and the sleep state
    Pereda, E
    de La Cruz, D
    Mañas, S
    Garrido, JM
    López, S
    González, JJ
    NEUROSCIENCE LETTERS, 2006, 394 (02) : 152 - 157
  • [9] Automatic Sleep Stage Classification Using Ear-EEG
    Stochholm, Andreas
    Mikkelsen, Kaare
    Kidmose, Preben
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 4751 - 4754
  • [10] Automatic Sleep Stage Classification using EEG and EMG signal
    Kim, Hyungjik
    Choi, Sunwoong
    2018 TENTH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2018), 2018, : 207 - 212