Fuzzy clustering with semantic interpretation

被引:20
|
作者
Liu, Xiaodong [1 ]
Wang, Xianchang [1 ,2 ]
Pedrycz, Witold [3 ,4 ,5 ]
机构
[1] Dalian Univ Technol, Res Ctr Informat & Control, Dalian 116024, Liaoning Provin, Peoples R China
[2] Dalian Ocean Univ, Sch Sci, Dalian 116023, Peoples R China
[3] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6R 2V4, Canada
[4] King Abdulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
[5] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
Fuzzy clustering; Semantic interpretation; AFS algebra; Selection of simple concepts; Cluster validity index; Unsupervised learning; LOGIC OPERATIONS; REPRESENTATIONS; FRAMEWORK; ALGORITHM;
D O I
10.1016/j.asoc.2014.09.037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the framework of Axiomatic Fuzzy Set (AFS) theory, we propose a new approach to data clustering. The objective of this clustering is to adhere to some principles of grouping exercised by humans when determining a structure in data. Compared with other clustering approaches, the proposed approach offers more detailed insight into the cluster's structure and the underlying decision making process. This contributes to the enhanced interpretability of the results via the representation capabilities of AFS theory. The effectiveness of the proposed approach is demonstrated by using real-world data, and the obtained results show that the performance of the clustering is comparable with other fuzzy rule-based clustering methods, and benchmark fuzzy clustering methods FCM and K-means. Experimental studies have shown that the proposed fuzzy clustering method can discover the clusters in the data and help specify them in terms of some comprehensive fuzzy rules. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:21 / 30
页数:10
相关论文
共 50 条
  • [1] A Fuzzy Co-clustering Interpretation of Probabilistic Latent Semantic Analysis
    Honda, Katsuhiro
    Goshima, Takafumi
    Ubukata, Seiki
    Notsu, Akira
    2016 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2016, : 718 - 723
  • [2] A spectral clustering method with semantic interpretation based on axiomatic fuzzy set theory
    Wang, Yuangang
    Duan, Xiaodong
    Liu, Xiaodong
    Wang, Cunrui
    Li, Zedong
    APPLIED SOFT COMPUTING, 2018, 64 : 59 - 74
  • [3] Fuzzy clustering of semantic spaces
    Martínez-Trinidad, JF
    Ruiz-Shulcloper, J
    PATTERN RECOGNITION, 2001, 34 (04) : 783 - 793
  • [4] Fuzzy Clustering for Semantic Knowledge Bases
    Esposito, Floriana
    d'Amato, Claudia
    Fanizzi, Nicola
    FUNDAMENTA INFORMATICAE, 2010, 99 (02) : 187 - 205
  • [5] Document clustering with semantic features and fuzzy association
    Park S.
    An D.U.
    Cha B.
    Kim C.-W.
    Communications in Computer and Information Science, 2010, 54 : 167 - 175
  • [6] Document Clustering with Semantic Features and Fuzzy Association
    Park, Sun
    An, Dong Un
    Cha, ByungRea
    Kim, Chul-Won
    INFORMATION SYSTEMS, TECHNOLOGY AND MANAGEMENT, PROCEEDINGS, 2010, 54 : 167 - +
  • [7] A semantic driven evolutive fuzzy clustering algorithm
    Fazendeiro, Paulo
    de Oliveira, Jose Valente
    2007 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-4, 2007, : 1982 - 1987
  • [8] Ontology-Based Fuzzy Semantic Clustering
    Cheng, Yang
    THIRD 2008 INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, VOL 2, PROCEEDINGS, 2008, : 128 - 133
  • [9] Agglomerative fuzzy clustering based on Bayesian interpretation
    Lee, Sang Wan
    Kim, Yong Soo
    Bien, Zeungnam
    IRI 2007: PROCEEDINGS OF THE 2007 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2007, : 342 - +
  • [10] Fuzzy reasoning framework to improve semantic video interpretation
    Mohamed Zarka
    Anis Ben Ammar
    Adel M. Alimi
    Multimedia Tools and Applications, 2016, 75 : 5719 - 5750