Automating Anomaly Detection for Exploratory Data Analytics

被引:0
|
作者
Thankachan, Karun [1 ]
机构
[1] Dell Int Serv Private Ltd, Bangalore 560047, Karnataka, India
关键词
machine learning; big data analytics; statistical learning; exploratory data analysis;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper discusses a design to automate the process of exploratory data analysis with an emphasis on outlier and anomaly detection. The paper discusses the domain of exploratory data analysis, the complexity involved in automating it and a solution leveraging the latest advances in computing to meet this. The solution details a framework that can accept data, understand the structure and type of variables, extract important variables and detect outliers or anomalies for understanding process bottlenecks. It takes advantage of big-data technologies and distributed computing (Hadoop and Spark) to make feasible the task of carrying out multiple lines of analysis and using intermediate results to drive analysis towards the desired goal. Statistical methods and visual data analytics form the core of the framework helping to automate exploratory data analysis, reducing time and focusing on the most valuable areas of concern in the data.
引用
收藏
页码:711 / 715
页数:5
相关论文
共 50 条
  • [1] Exploratory security analytics for anomaly detection
    Pierazzi, Fabio
    Casolari, Sara
    Colajanni, Michele
    Marchetti, Mirco
    [J]. COMPUTERS & SECURITY, 2016, 56 : 28 - 49
  • [2] Big Data Analytics for Anomaly Detection in Blockchain
    Ozbilen, Mahmut Lutfullah
    Ozcan, Elif
    Keles, Mustafa Berk
    Zeybel, Merve
    Dervisoglu, Havanur
    Dogan, Aslinur
    Haklidir, Mehmet
    [J]. 2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [3] Anomaly detection for visual analytics of power consumption data
    Janetzko, Halldor
    Stoffel, Florian
    Mittelstaedt, Sebastian
    Keim, Daniel A.
    [J]. COMPUTERS & GRAPHICS-UK, 2014, 38 : 27 - 37
  • [4] A Big Data Analytics Based Approach to Anomaly Detection
    Razaq, Abdul
    Tianfield, Huaglory
    Barrie, Peter
    [J]. 2016 3RD IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES (BDCAT), 2016, : 187 - 193
  • [5] Data Analytics Methods for Anomaly Detection: Evolution and Recommendations
    Abu Sulayman, Iman I. M.
    Ouda, Abdelkader
    [J]. 2018 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INFORMATION SECURITY (ICSPIS), 2018, : 57 - 60
  • [6] A data analytics framework for anomaly detection in flight operations
    Coelho e Silva, Lucas
    Rocha Murca, Mayara Conde
    [J]. JOURNAL OF AIR TRANSPORT MANAGEMENT, 2023, 110
  • [7] Big Data Analytics for Network Anomaly Detection from Netflow Data
    Terzi, Duygu Sinanc
    Terzi, Ramazan
    Sagiroglu, Seref
    [J]. 2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2017, : 592 - 597
  • [8] Poster: Anomaly Detection to Improve Security of Big Data Analytics
    Slooff, Tom
    Regazzoni, Francesco
    Brocheton, Fabien
    Parodi, Antonio
    Cmar, Radim
    [J]. PROCEEDINGS OF THE 19TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2022 (CF 2022), 2022, : 205 - 206
  • [9] Anomaly detection for cellular networks using big data analytics
    Li, Bing
    Zhao, Shengjie
    Zhang, Rongqing
    Shi, Qingjiang
    Yang, Kai
    [J]. IET COMMUNICATIONS, 2019, 13 (20) : 3351 - 3359
  • [10] Hybrid Group Anomaly Detection for Sequence Data: Application to Trajectory Data Analytics
    Belhadi, Asma
    Djenouri, Youcef
    Srivastava, Gautam
    Cano, Alberto
    Lin, Jerry Chun-Wei
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 9346 - 9357