Measurement-based Feedback Control of Linear Quantum Stochastic Systems with Quadratic-Exponential Criteria

被引:2
|
作者
Vladimirov, Igor G. [1 ]
James, Matthew R. [1 ]
Petersen, Ian R. [1 ]
机构
[1] Australian Natl Univ, Coll Engn & Comp Sci, Res Sch Elect Energy & Mat Engn, Acton, ACT 2601, Australia
来源
IFAC PAPERSONLINE | 2020年 / 53卷 / 02期
基金
澳大利亚研究理事会;
关键词
Open quantum harmonic oscillator; quantum risk-sensitive control; measurement-based feedback; quadratic-exponential cost;
D O I
10.1016/j.ifacol.2020.12.140
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with a risk-sensitive optimal control problem for a feedback connection of a quantum plant with a measurement-based classical controller. The plant is a multimode open quantum harmonic oscillator driven by a multichannel quantum Wiener process, and the controller is a linear time invariant system governed by a stochastic differential equation. The control objective is to stabilize the closed-loop system and minimize the infinite-horizon asymptotic growth rate of a quadratic exponential functional (QEF) which penalizes the plant variables and the controller output. We combine a frequency-domain representation of the QEF growth rate, obtained recently, with variational techniques and establish first-order necessary conditions of optimality for the state-space matrices of the controller. Copyright (C) 2020 The Authors.
引用
收藏
页码:311 / 316
页数:6
相关论文
共 50 条
  • [1] Probabilistic Bounds with Quadratic-Exponential Moments for Quantum Stochastic Systems
    Vladimirov, Igor G.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 5185 - 5190
  • [2] A Girsanov Type Representation of Quadratic-Exponential Cost Functionals for Linear Quantum Stochastic Systems
    Vladimirov, Igor G.
    Petersen, Ian R.
    James, Matthew R.
    [J]. 2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 806 - 811
  • [3] A Quantum Karhunen-Loeve Expansion and Quadratic-Exponential Functionals for Linear Quantum Stochastic Systems
    Vladimirov, Igor G.
    Petersen, Ian R.
    James, Matthew R.
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 425 - 430
  • [4] State-space computation of quadratic-exponential functional rates for linear quantum stochastic systems
    Vladimirov, Igor G.
    Petersen, Ian R.
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (17): : 14098 - 14132
  • [5] Frequency-Domain Computation of Quadratic-Exponential Cost Functionals for Linear Quantum Stochastic Systems
    Vladimirov, Igor G.
    Petersen, Ian R.
    James, Matthew R.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 300 - 305
  • [6] Optimal measurement-based feedback control on noisy quantum systems
    Liu, Cheng-Cheng
    Wei, Ting-Sheng
    Shi, Jia-Dong
    Ding, Zhi-Yong
    He, Juan
    Wu, Tao
    Ye, Liu
    [J]. LASER PHYSICS LETTERS, 2021, 18 (11)
  • [7] Is measurement-based feedback still better for quantum control systems?
    Qi, Bo
    Guo, Lei
    [J]. SYSTEMS & CONTROL LETTERS, 2010, 59 (06) : 333 - 339
  • [8] Multi-point Gaussian States, Quadratic-Exponential Cost Functionals, and Large Deviations Estimates for Linear Quantum Stochastic Systems
    Vladimirov, Igor G.
    Petersen, Ian R.
    James, Matthew R.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (01): : 83 - 137
  • [9] Linear Exponential Quadratic Control for Mean Field Stochastic Systems
    Moon, Jun
    Kim, Yoonsoo
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (12) : 5094 - 5100
  • [10] Measurement-Based Quantum Thermal Machines with Feedback Control
    Bhandari, Bibek
    Czupryniak, Robert
    Erdman, Paolo Andrea
    Jordan, Andrew N.
    [J]. ENTROPY, 2023, 25 (02)