Low rank interpolation of boundary spline curves

被引:14
|
作者
Juettler, Bert [1 ,2 ]
Mokris, Dominik [1 ]
机构
[1] Johannes Kepler Univ Linz, Inst Appl Geometry, Linz, Austria
[2] Austrian Acad Sci, Radon Inst Computat & Appl Math, Vienna, Austria
基金
奥地利科学基金会;
关键词
Spline surface interpolation; Domain parametrization; Low rank approximation; Coons interpolation; Biharmonic interpolation; GENERATE BEZIER SURFACES; THB-SPLINES; TENSOR; PATCHES; COONS;
D O I
10.1016/j.cagd.2017.03.012
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The coefficients of a tensor-product spline surface in R-d with m x n control points form a tensor of order 3 and dimension (m, n, d). Motivated by applications in isogeometric analysis we analyze the rank of this tensor. In particular, we propose a new construction for low rank tensor-product spline surfaces from given boundary curves. While the results of this construction are generally not affinely invariant, we propose a simple standardization procedure that guarantees affine invariance for d = 2. In addition we provide a detailed comparison with existing constructions of spline surfaces from boundary data. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 68
页数:21
相关论文
共 50 条