Understanding Interfacial Recombination Processes in Narrow-Band-Gap Organic Solar Cells

被引:29
|
作者
Schopp, Nora [1 ]
Luong, Hoang Mai [1 ]
Luginbuhl, Benjamin R. [1 ]
Panoy, Patchareepond [2 ]
Choi, Dylan [1 ]
Promarak, Vinich [2 ]
Brus, Viktor V. [3 ]
Nguyen, Thuc-Quyen [1 ]
机构
[1] Univ Calif Santa Barbara UCSB, Ctr Polymers & Organ Solids, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[2] Vidyasirimedhi Inst Sci & Technol, Sch Mol Sci & Engn, Dept Mat Sci & Engn, Rayong 21210, Thailand
[3] Nazarbayev Univ, Sch Sci & Humanities, Dept Phys, Nur Sultan City 010000, Kazakhstan
关键词
NON-FULLERENE ACCEPTORS; BIMOLECULAR RECOMBINATION; SILVER NANOWIRES; EFFICIENCY; PHOTODETECTORS; MORPHOLOGY; VOLTAGE; BULK; ZNO;
D O I
10.1021/acsenergylett.2c00502
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Recombination losses in organic photovoltaics (OPVs) remain aperformance-limiting factor, including bulk trap-assisted recombination and interfacialrecombination at the electrode:active layer interface. In this work, we demonstrate therole of the front electrode:active layer interface in a narrow-band-gap system,PCE10:COTIC-4F, a promising candidate for semitransparent organic photovoltaics.We systematically address charge generation, recombination, and extraction, with afocus on interfacial recombination via surface traps by a comparison of four devicestructures with electrodes based on ZnO, ZnO/PFN-Br, PEDOT:PSS, and a self-dopedconjugated polyelectrolyte (CPE-K). The amount of interfacial recombination isaffected significantly by the electrode choice, while similar levels of bulk recombinationare maintained. For the studied blend, we identify ZnO as a suitable choice, pairing lowsurface recombination rates with beneficial charge carrier generation, favorable energylevel alignment, and efficient extraction. In contrast, PEDOT:PSS-based devices sufferfrom interfacial recombination, which can be suppressed when CPE-K is used instead
引用
收藏
页码:1626 / 1634
页数:9
相关论文
共 50 条
  • [1] Temperature dependence of Auger recombination in a multilayer narrow-band-gap superlattice
    Jang, DJ
    Flatte, ME
    Grein, CH
    Olesberg, JT
    Hasenberg, TC
    Boggess, TF
    PHYSICAL REVIEW B, 1998, 58 (19) : 13047 - 13054
  • [2] Peculiarities of solar elements based on narrow-band-gap semiconductors
    Saidov M.S.
    Applied Solar Energy, 2011, 47 (4) : 259 - 262
  • [3] Employing a Narrow-Band-Gap Mediator in Ternary Solar Cells for Enhanced Photovoltaic Performance
    Xiao, Liangang
    Mao, Haiyan
    Li, Zhengdong
    Yan, Cong
    Liu, Jia
    Liu, Yidong
    Reimer, Jeffrey A.
    Min, Yonggang
    Liu, Yi
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (14) : 16387 - 16393
  • [4] A CLASS OF NARROW-BAND-GAP SEMICONDUCTING POLYMERS
    JENEKHE, SA
    NATURE, 1986, 322 (6077) : 345 - 347
  • [5] New narrow-band-gap thiazoloquinoxaline-containing polymers and their use in solar cells with bulk heterojunction
    M. L. Keshtov
    S. A. Kuklin
    I. O. Konstantinov
    M. M. Krayushkin
    N. A. Radychev
    A. R. Khokhlov
    Doklady Chemistry, 2016, 471 : 373 - 377
  • [6] New narrow-band-gap thiazoloquinoxaline-containing polymers and their use in solar cells with bulk heterojunction
    Keshtov, M. L.
    Kuklin, S. A.
    Konstantinov, I. O.
    Krayushkin, M. M.
    Radychev, N. A.
    Khokhlov, A. R.
    DOKLADY CHEMISTRY, 2016, 471 : 373 - 377
  • [7] Auger recombination in antimony-based, strain-balanced, narrow-band-gap superlattices
    Olesberg, JT
    Boggess, TF
    Anson, SA
    Jang, DJ
    Flatte, ME
    Hasenberg, TC
    Grein, CH
    INFRARED APPLICATIONS OF SEMICONDUCTORS II, 1998, 484 : 83 - 88
  • [9] A PROPOSED NARROW-BAND-GAP BASE TRANSISTOR STRUCTURE
    HADDAD, GI
    MAINS, RK
    REDDY, UK
    EAST, JR
    SUPERLATTICES AND MICROSTRUCTURES, 1989, 5 (03) : 437 - 441
  • [10] Perovskite solar cells with narrow band gap
    Hayase, Shuzi
    CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 11 : 146 - 150