Two original computer codes for the design of rare-earth-doped dielectric microspheres have been ad hoc developed. The former code is based on a finite-difference time-domain algorithm, suitably extended to model the amplification of the whispering-gallery modes propagating into rare-earth-doped microspheres. It takes into account the wavelength dispersion of the microsphere refractive index and the polarization obtained via the density matrix model. The design of an Er(3+)-doped silica microsphere coupled with a tapered silica fiber is reported. The latter home-made computer code solves the rate equations and the power propagation equations in frequency domain. The results are in excellent agreement.
机构:
NEATORU and Thermochemistry Facility, University of California at Davis, DavisNEATORU and Thermochemistry Facility, University of California at Davis, Davis