Soil Moisture Content Estimation Based on Sentinel-1 and Auxiliary Earth Observation Products. A Hydrological Approach

被引:100
|
作者
Alexakis, Dimitrios D. [1 ]
Mexis, Filippos-Dimitrios K. [1 ]
Vozinaki, Anthi-Eirini K. [1 ]
Daliakopoulos, Ioannis N. [1 ]
Tsanis, Ioannis K. [1 ]
机构
[1] Tech Univ Crete, Sch Environm Engn, Khania 73100, Greece
来源
SENSORS | 2017年 / 17卷 / 06期
关键词
soil moisture content; Sentinel-1; Landsat; 8; artificial neural network; HEC-HMS; Crete; REMOTE-SENSING DATA; EMPIRICAL-MODEL; WATER CONTENT; RADAR DATA; SAR DATA; RETRIEVAL; ALGORITHM; IDENTIFICATION; INTEGRATION; CALIBRATION;
D O I
10.3390/s17061455
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A methodology for elaborating multi-temporal Sentinel-1 and Landsat 8 satellite images for estimating topsoil Soil Moisture Content (SMC) to support hydrological simulation studies is proposed. After pre-processing the remote sensing data, backscattering coefficient, Normalized Difference Vegetation Index (NDVI), thermal infrared temperature and incidence angle parameters are assessed for their potential to infer ground measurements of SMC, collected at the top 5 cm. A non-linear approach using Artificial Neural Networks (ANNs) is tested. The methodology is applied in Western Crete, Greece, where a SMC gauge network was deployed during 2015. The performance of the proposed algorithm is evaluated using leave-one-out cross validation and sensitivity analysis. ANNs prove to be the most efficient in SMC estimation yielding R-2 values between 0.7 and 0.9. The proposed methodology is used to support a hydrological simulation with the HEC-HMS model, applied at the Keramianos basin which is ungauged for SMC. Results and model sensitivity highlight the contribution of combining Sentinel-1 SAR and Landsat 8 images for improving SMC estimates and supporting hydrological studies.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Soil Moisture Content Estimation Based on Sentinel-1 SAR Imagery Using an Artificial Neural Network and Hydrological Components
    Chung, Jeehun
    Lee, Yonggwan
    Kim, Jinuk
    Jung, Chunggil
    Kim, Seongjoon
    REMOTE SENSING, 2022, 14 (03)
  • [2] Global Evaluation of SMAP/Sentinel-1 Soil Moisture Products
    Mohseni, Farzane
    Mirmazloumi, S. Mohammad
    Mokhtarzade, Mehdi
    Jamali, Sadegh
    Homayouni, Saeid
    REMOTE SENSING, 2022, 14 (18)
  • [3] ESTIMATION OF SOIL MOISTURE USING SENTINEL-1 AND SENTINEL-2 IMAGES
    Sarteshnizi, R. Esmaeili
    Vayghan, S. Sahebi
    Jazirian, I.
    ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 137 - 142
  • [4] Detection of soil moisture anomalies based on Sentinel-1
    Greifeneder, Felix
    Khamala, Erick
    Sendabo, Degelo
    Wagner, Wolfgang
    Zebisch, Marc
    Farah, Hussein
    Notarnicola, Claudia
    PHYSICS AND CHEMISTRY OF THE EARTH, 2019, 112 : 75 - 82
  • [5] WEIGHTS BASED DECISION LEVEL DATA FUSION OF LANDSAT-8 AND SENTINEL-1 FOR SOIL MOISTURE CONTENT ESTIMATION
    Yahia, Oualid
    Guida, Raffaella
    Iervolino, Pasquale
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8078 - 8081
  • [6] Hybrid Methodology Using Sentinel-1/Sentinel-2 for Soil Moisture Estimation
    Nativel, Simon
    Ayari, Emna
    Rodriguez-Fernandez, Nemesio
    Baghdadi, Nicolas
    Madelon, Remi
    Albergel, Clement
    Zribi, Mehrez
    REMOTE SENSING, 2022, 14 (10)
  • [7] Evaluation of soil moisture estimation techniques based on Sentinel-1 observations over wheat fields
    Arias, Maria
    Notarnicola, Claudia
    Campo-Besc, Miguel Angel
    Arregui, Luis Miguel
    Alvarez-Mozos, Jesus
    AGRICULTURAL WATER MANAGEMENT, 2023, 287
  • [8] Soil Moisture Monitoring at Kilometer Scale: Assimilation of Sentinel-1 Products in ISBA
    Rojas-Munoz, Oscar
    Calvet, Jean-Christophe
    Bonan, Bertrand
    Baghdadi, Nicolas
    Meurey, Catherine
    Napoly, Adrien
    Wigneron, Jean-Pierre
    Zribi, Mehrez
    REMOTE SENSING, 2023, 15 (17)
  • [9] Estimation of Sentinel-1 derived soil moisture using modified Dubois model
    Settu, Prabhavathy
    Ramaiah, Mangayarkarasi
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2024, 26 (11) : 29677 - 29693
  • [10] CLAY CONTENT MAPPING USING SOIL MOISTURE PRODUCTS DERIVED FROM A SYNERGETIC USE OF SENTINEL-1 AND SENTINEL-2 DATA
    Bousbih, Safa
    Zribi, Mehrez
    Chabaane, Zohra Lili
    Baghdadi, Nicolas
    Gorrab, Azza
    Ben Aissa, Nadhira
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4910 - 4913