Quantum statistical mechanics with Gaussians: Equilibrium properties of van der Waals clusters

被引:86
|
作者
Frantsuzov, PA [1 ]
Mandelshtam, VA [1 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2004年 / 121卷 / 19期
关键词
D O I
10.1063/1.1804495
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The variational Gaussian wave-packet method for computation of equilibrium density matrices of quantum many-body systems is further developed. The density matrix is expressed in terms of Gaussian resolution, in which each Gaussian is propagated independently in imaginary time beta=(k(B)T)(-1) starting at the classical limit beta=0. For an N-particle system a Gaussian exp[(r-q)(T)G(r-q)+gamma] is represented by its center qis an element ofR(3N), the width matrix Gis an element ofR(3Nx3N), and the scale gammais an element ofR, all treated as dynamical variables. Evaluation of observables is done by Monte Carlo sampling of the initial Gaussian positions. As demonstrated previously at not-very-low temperatures the method is surprisingly accurate for a range of model systems including the case of double-well potential. Ideally, a single Gaussian propagation requires numerical effort comparable to the propagation of a single classical trajectory for a system with 9(N-2+N)/2 degrees of freedom. Furthermore, an approximation based on a direct product of single-particle Gaussians, rather than a fully coupled Gaussian, reduces the number of dynamical variables to 9N. The success of the methodology depends on whether various Gaussian integrals needed for calculation of, e.g., the potential matrix elements or pair correlation functions could be evaluated efficiently. We present techniques to accomplish these goals and apply the method to compute the heat capacity and radial pair correlation function of Ne-13 Lennard-Jones cluster. Our results agree very well with the available path-integral Monte Carlo calculations. (C) 2004 American Institute of Physics.
引用
收藏
页码:9247 / 9256
页数:10
相关论文
共 50 条
  • [1] Statistical mechanics approach to inhomogeneous van der Waals fluids
    Zhou, Shiqi
    MOLECULAR SIMULATION, 2006, 32 (14) : 1165 - 1177
  • [2] Van der waals interactions and photoelectric effect in noncommutative quantum mechanics
    Li Kang
    Chamoun, Nidal
    CHINESE PHYSICS LETTERS, 2007, 24 (05) : 1183 - 1186
  • [3] Optimized van der Waals parameters for quantum/molecular mechanics calculations
    Pulay, Peter
    Fogarasi, Geza
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [4] van der Waals Function for Molecular Mechanics
    Yang, Li
    Sun, Lei
    Deng, Wei-Qiao
    JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (10): : 2102 - 2107
  • [5] Van der Waals interactions in aromatic clusters: Investigation with quantum chemical methods
    Gonzalez, CA
    Allison, TC
    Gonzalez, I
    Lim, EC
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U2858 - U2858
  • [6] Diagnostics of mixed van der Waals clusters
    E. Fort
    F. Pradère
    A. De Martino
    H. Vach
    M. Châtelet
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 1998, 1 : 79 - 84
  • [7] Diagnostics of mixed van der Waals clusters
    Fort, E
    Pradere, F
    De Martino, A
    Vach, H
    Chatelet, M
    EUROPEAN PHYSICAL JOURNAL D, 1998, 1 (01): : 79 - 84
  • [8] Van der Waals Effects on semiconductor clusters
    Li, Haisheng
    Chen, Weiguang
    Han, Xiaoyu
    Li, Liben
    Sun, Qiang
    Guo, Zhengxiao
    Jia, Yu
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2015, 36 (25) : 1919 - 1927
  • [9] Generic van der Waals equation of state and statistical mechanical representations of the van der Waals parameters
    Eu, BC
    Rah, K
    PHYSICAL REVIEW E, 2001, 63 (03): : 031203 - 031203
  • [10] Aromatic van der Waals clusters: Structure and nonrigidity
    Sun, S
    Bernstein, ER
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (32): : 13348 - 13366