Volume expansion rate of the Lorentzian manifold based on integral Ricci curvature over a timelike geodesic

被引:5
|
作者
Paeng, Seong-Hun [1 ]
机构
[1] Konkuk Univ, Dept Math, Seoul 143701, South Korea
关键词
Ricci curvature; volume expansion;
D O I
10.1016/j.geomphys.2006.12.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recent astronomical observations show that the universe is not only expanding but also undergoing accelerated expansion [A.G. Riess, et al., The farthest known supernova, Astrophys. J. 560 (2001) 49-7 1; P.K. Townsend, M.N.R. Wohlfarth, Accelerating cosmologies from compactification, Phys. Rev. Lett. 91 (2003) 061302]. Then the timelike convergence condition does not hold every time, i.e. the Ricci curvature Ric(v, v) cannot be nonnegative for every tintelike vector v. We obtain the volume expansion rate of the universe based on the integral norm of negative part of the Ricci curvature along a timelike geodesic. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1499 / 1503
页数:5
相关论文
共 33 条