Some inequalities for eigenvalues and symplectic eigenvalues of positive definite matrices

被引:3
|
作者
Bhatia, Rajendra [1 ]
机构
[1] Ashoka Univ, Sonepat 131029, Haryana, India
关键词
Eigenvalue; singular value; symplectic eigenvalue; Williamson parameter;
D O I
10.1142/S0129167X19500551
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for any two n x n matrices X and Y we have the inequality s(j)(2) (I + XY) <= lambda(j) ((I+X * X)(I+Y * Y)), where s(j)(T) and lambda(j) (T) denote the decreasingly ordered singular values and eigenvalues of T. As an application, we show that for 2n x 2n real positive definite matrices the symplectic eigenvalues d(j), under some special conditions, satisfy the inequality d(j) (A + B) >= d(j)(A) + d(1)(B).
引用
收藏
页数:5
相关论文
共 50 条