Two new criteria for solvability of finite groups

被引:31
|
作者
Herzog, Marcel [1 ]
Longobardi, Patrizia [2 ]
Maj, Mercede [2 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, Tel Aviv, Israel
[2] Univ Salerno, Dipartimento Matemat, Via Giovanni Paolo 2 132, I-84084 Salerno, Italy
关键词
Group element orders; Solvable groups; ELEMENT ORDERS; SUMS;
D O I
10.1016/j.jalgebra.2018.06.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the following two new criteria for the solvability of finite groups. Theorem 1: Let G be a finite group of order n containing a subgroup A of prime power index p(s). Suppose that A contains a normal cyclic subgroup B satisfying the following condition: A/B is a cyclic group of order 2(r) for some non-negative integer r. Then G is a solvable group. Theorem 3: Let G be a finite group of order n and suppose that psi(G) >= 1/6.68 psi(C-n), where psi(G) denotes the sum of the orders of all elements of G and C-n denotes the cyclic group of order n. Then G is a solvable group. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:215 / 226
页数:12
相关论文
共 50 条
  • [1] NEW CRITERIA FOR THE SOLVABILITY OF FINITE-GROUPS
    ARAD, Z
    WARD, MB
    [J]. JOURNAL OF ALGEBRA, 1982, 77 (01) : 234 - 246
  • [2] A new solvability criterion for finite groups
    Dolfi, Silvio
    Guralnick, Robert M.
    Herzog, Marcel
    Praeger, Cheryl E.
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 85 : 269 - 281
  • [3] ON THE SOLVABILITY OF FINITE GROUPS
    Asaad, M.
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (02) : 719 - 723
  • [4] Solvability of finite groups
    Jia Zhang
    Baijun Gao
    Long Miao
    [J]. Frontiers of Mathematics in China, 2017, 12 : 1501 - 1514
  • [5] Solvability of finite groups
    Zhang, Jia
    Gao, Baijun
    Miao, Long
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (06) : 1501 - 1514
  • [6] SOME CRITERIA FOR SOLVABILITY AND NILPOTENCY OF FINITE GROUPS BY STRONGLY MONOLITHIC CHARACTERS
    Gungor, Sultan Bozkurt
    Erkoc, Temha
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 108 (01) : 120 - 124
  • [7] Criteria for the p-solvability and p-supersolvability of finite groups
    Liu, Yufeng
    Guo, Wenbin
    Kovaleva, V. A.
    Skiba, A. N.
    [J]. MATHEMATICAL NOTES, 2013, 94 (3-4) : 426 - 439
  • [8] Criteria for the p-solvability and p-supersolvability of finite groups
    Yufeng Liu
    Wenbin Guo
    V. A. Kovaleva
    A. N. Skiba
    [J]. Mathematical Notes, 2013, 94 : 426 - 439
  • [9] New criteria for σ-solvable finite groups
    Kaspczyk, Julian
    Aseeri, Fawaz
    [J]. RICERCHE DI MATEMATICA, 2024,
  • [10] New Criteria of Supersolvability of Finite Groups
    Tang N.
    Li X.
    [J]. Acta Mathematica Vietnamica, 2016, 41 (4) : 539 - 548