Extended Lanczos bidiagonalization algorithm for low rank approximation and its applications

被引:1
|
作者
Wang, Xuansheng [1 ]
Glineur, Francois [2 ]
Lu, Linzhang [3 ]
Van Dooren, Paul [4 ,5 ]
机构
[1] Shenzhen Inst Informat Technol, Software Engn, Shenzhen, Peoples R China
[2] Catholic Univ Louvain, CORE, B-1348 Louvain La Neuve, Belgium
[3] Guizhou Normal Univ, Sch Math & Comp Sci, Guizhou, Peoples R China
[4] Catholic Univ Louvain, ICTEAM Inst, B-1348 Louvain La Neuve, Belgium
[5] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
基金
中国国家自然科学基金;
关键词
Low rank approximation; Singular value decomposition; Lanczos bidiagonalization; RECOGNITION;
D O I
10.1016/j.cam.2015.12.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an extended Lanczos bidiagonalization algorithm for finding a low rank approximation of a given matrix. We show that this method can yield better low-rank approximations than standard Lanczos bidiagonalization algorithm, without increasing the cost too much. We also describe a partial reorthogonalization process that can be used to maintain an adequate level of orthogonality of the Lanczos vectors in order to produce accurate low-rank approximations. We demonstrate the effectiveness and applicability of our algorithm for a number of applications. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:213 / 229
页数:17
相关论文
共 50 条