Bayesian fMRI time series analysis with spatial priors

被引:176
|
作者
Penny, WD
Trujillo-Barreto, NJ
Friston, KJ
机构
[1] UCL, Wellcome Dept Imaging Neurosci, London WC1N 3BG, England
[2] Cuban Neurosci Ctr, Havana, Cuba
基金
英国惠康基金;
关键词
variational Bayes; fMRI; spatial priors; effect-size; general linear model; autoregressive model; laplacian; smoothing;
D O I
10.1016/j.neuroimage.2004.08.034
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We describe a Bayesian estimation and inference procedure for fMRI time series based on the use of General Linear Models (GLMs). Importantly, we use a spatial prior on regression coefficients which embodies our prior knowledge that evoked responses are spatially contiguous and locally homogeneous. Further, using a computationally efficient Variational Bayes framework, we are able to let the data determine the optimal amount of smoothing. We assume an arbitrary order Auto-Regressive (AR) model for the errors. Our model generalizes earlier work on voxel-wise estimation of GLM-AR models and inference in GLMs using Posterior Probability Maps (PPMs). Results are shown on simulated data and on data from an event-related fMRI experiment. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:350 / 362
页数:13
相关论文
共 50 条
  • [1] ANATOMICALLY INFORMED BAYESIAN SPATIAL PRIORS FOR FMRI ANALYSIS
    Abramian, David
    Siden, Per
    Knutsson, Hans
    Villani, Mattias
    Eklund, Anders
    [J]. 2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1026 - 1030
  • [2] Multigrid Priors for fMRI time series analysis
    Caticha, N
    Amaral, SD
    Rabbani, SR
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2004, 735 : 27 - 34
  • [3] Time series analysis of fMRI data: Spatial modelling and Bayesian computation
    Teng, Ming
    Johnson, Timothy D.
    Nathoo, Farouk S.
    [J]. STATISTICS IN MEDICINE, 2018, 37 (18) : 2753 - 2770
  • [4] Bayesian fMRI data analysis with sparse spatial basis function priors
    Flandin, Guillaume
    Penny, William D.
    [J]. NEUROIMAGE, 2007, 34 (03) : 1108 - 1125
  • [5] Bayesian fMRI data analysis with sparse spatial basis function priors
    Flandin, Guillaume
    Penny, William D.
    [J]. WAVELETS XII, PTS 1 AND 2, 2007, 6701
  • [6] Bayesian MEG time courses with fMRI priors
    Wang, Yingying
    Holland, Scott K.
    [J]. BRAIN IMAGING AND BEHAVIOR, 2022, 16 (02) : 781 - 791
  • [7] Bayesian MEG time courses with fMRI priors
    Yingying Wang
    Scott K. Holland
    [J]. Brain Imaging and Behavior, 2022, 16 : 781 - 791
  • [8] Multilevel Group Analysis on Bayesian in fMRI Time Series
    Yang, Feng
    Fu, Kuang
    Zhou, Ai
    [J]. PROCEEDINGS OF THE 2014 9TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, THEORY AND APPLICATIONS (VISAPP 2014), VOL 3, 2014, : 91 - 97
  • [9] Bayesian modelling of fMRI time series
    Hojen-Sorensen, PADFR
    Hansen, LK
    Rasmussen, CE
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 754 - 760
  • [10] Fast Bayesian whole-brain fMRI analysis with spatial 3D priors
    Siden, Per
    Eklund, Anders
    Bolin, David
    Villani, Mattias
    [J]. NEUROIMAGE, 2017, 146 : 211 - 225