A sharp form of the Cramer-Wold theorem

被引:47
|
作者
Cuesta-Albertos, Juan Antonio [1 ]
Fraiman, Ricardo
Ransford, Thomas
机构
[1] Univ Cantabria, Dept Matemat Estad & Computac, E-39005 Santander, Spain
[2] Univ San Andres, Dept Matemat & Ciencias, Buenos Aires, DF, Argentina
[3] Univ Laval, Dept Math & Stat, Ste Foy, PQ G1K 7P4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
probability measures; projections; Cramer-Wold theorem; Hilbert spaces;
D O I
10.1007/s10959-007-0060-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Cramer-Wold theorem states that a Borel probability measure P on R-d supercript stop is uniquely determined by its one-dimensional projections. We prove a sharp form of this result, addressing the problem of how large a subset of these projections is really needed to determine P. We also consider extensions of our results to measures on a separable Hilbert space.
引用
收藏
页码:201 / 209
页数:9
相关论文
共 50 条
  • [1] A CALCULUS PROOF OF THE CRAMER-WOLD THEOREM
    Lyons, Russell
    Zumbrun, Kevin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (03) : 1331 - 1334
  • [2] A Cramer-Wold theorem for elliptical distributions
    Fraiman, Ricardo
    Moreno, Leonardo
    Ransford, Thomas
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 196
  • [3] CRAMER-WOLD FACTORIZATION
    GODOLPHIN, EJ
    BIOMETRIKA, 1976, 63 (02) : 367 - 380
  • [4] CRAMER-WOLD FACTORIZATION
    LAURIE, DP
    APPLIED STATISTICS-JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C, 1982, 31 (01): : 86 - 93
  • [5] THE CRAMER-WOLD THEOREM ON QUADRATIC SURFACES AND HEISENBERG UNIQUENESS PAIRS
    Groechenig, Karlheinz
    Jaming, Philippe
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2020, 19 (01) : 117 - 135
  • [6] Cramer-Wold Auto-Encoder
    Knop, Szymon
    Spurek, Przemyslaw
    Tabor, Jacek
    Podolak, Igor
    Mazur, Marcin
    Jastrzebski, Stanislaw
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [7] Cramer-wold auto-encoder
    Knop, Szymon
    Spurek, Przemyslaw
    Tabor, Jacek
    Podolak, Igor
    Mazur, Marcin
    Jastrzebski, Stanislaw
    1600, Microtome Publishing (21):
  • [8] A Sharp Form of the Cramér–Wold Theorem
    Juan Antonio Cuesta-Albertos
    Ricardo Fraiman
    Thomas Ransford
    Journal of Theoretical Probability, 2007, 20 : 201 - 209
  • [9] A THEOREM OF CRAMER AND WOLD REVISITED
    SITARAM, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (04) : 714 - 716
  • [10] On Kesten's counterexample to the Cramer-Wold device for regular variation
    Hult, H
    Lindskog, F
    BERNOULLI, 2006, 12 (01) : 133 - 142