CELLTRACK R-CNN: A NOVEL END-TO-END DEEP NEURAL NETWORK FOR CELL SEGMENTATION AND TRACKING IN MICROSCOPY IMAGES

被引:10
|
作者
Chen, Yuqian [1 ]
Song, Yang [2 ]
Zhang, Chaoyi [1 ]
Zhang, Fan [3 ]
O'Donnell, Lauren [3 ]
Chrzanowski, Wojciech [4 ,5 ]
Cai, Weidong [1 ]
机构
[1] Univ Sydney, Sch Comp Sci, Sydney, NSW, Australia
[2] Univ New South Wales, Sch Comp Sci & Engn, Sydney, NSW, Australia
[3] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
[4] Univ Sydney, Sydney Pharm Sch, Sydney, NSW, Australia
[5] Univ Sydney, Sydney Nano Inst, Sydney, NSW, Australia
关键词
Cell segmentation; cell tracking; deep learning; end-to-end; Siamese Network; spatial information;
D O I
10.1109/ISBI48211.2021.9434057
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cell segmentation and tracking in microscopy images are of great significance to new discoveries in biology and medicine. In this study, we propose a novel approach to combine cell segmentation and cell tracking into a unified end-to-end deep learning based framework, where cell detection and segmentation are performed with a current instance segmentation pipeline and cell tracking is implemented by integrating Siamese Network with the pipeline. Besides, tracking performance is improved by incorporating spatial information into the network and fusing spatial and visual prediction. Our approach was evaluated on the DeepCell benclunark dataset. Despite being simple and efficient, our method outperforms state-of-the-art algorithms in terms of both cell segmentation and cell tracking accuracies.
引用
收藏
页码:779 / 782
页数:4
相关论文
共 50 条
  • [1] Panoptic Segmentation with an End-to-End Cell R-CNN for Pathology Image Analysis
    Zhang, Donghao
    Song, Yang
    Liu, Dongnan
    Jia, Haozhe
    Liu, Siqi
    Xia, Yong
    Huang, Heng
    Cai, Weidong
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT II, 2018, 11071 : 237 - 244
  • [2] Sparse R-CNN: An End-to-End Framework for Object Detection
    Sun, Peize
    Zhang, Rufeng
    Jiang, Yi
    Kong, Tao
    Xu, Chenfeng
    Zhan, Wei
    Tomizuka, Masayoshi
    Yuan, Zehuan
    Luo, Ping
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (12) : 15650 - 15664
  • [3] Cyclone detection with end-to-end super resolution and faster R-CNN
    Moustafa, Marwa S.
    Metwalli, Mohamed R.
    Samshitha, Roy
    Mohamed, Sayed A.
    Shovan, Barma
    [J]. EARTH SCIENCE INFORMATICS, 2024, 17 (03) : 1837 - 1850
  • [4] PolyR-CNN: R-CNN for end-to-end polygonal building outline extraction
    Jiao, Weiqin
    Persello, Claudio
    Vosselman, George
    [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 218 : 33 - 43
  • [5] Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
    Sun, Peize
    Zhang, Rufeng
    Jiang, Yi
    Kong, Tao
    Xu, Chenfeng
    Zhan, Wei
    Tomizuka, Masayoshi
    Li, Lei
    Yuan, Zehuan
    Wang, Changhu
    Luo, Ping
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 14449 - 14458
  • [6] Segmentation of Retinal Layer Boundary in OCT Images Based on End-to-end Deep Neural Network and Graph Search
    Hu, Kai
    Jiang, Shuai
    Liu, Dong
    Gao, Xie-Ping
    [J]. Ruan Jian Xue Bao/Journal of Software, 2024, 35 (06): : 3036 - 3051
  • [7] CAM R-CNN: End-to-End Object Detection with Class Activation Maps
    Zhang, Shengchuan
    Yu, Songlin
    Ding, Haixin
    Hu, Jie
    Cao, Liujuan
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (08) : 10483 - 10499
  • [8] CAM R-CNN: End-to-End Object Detection with Class Activation Maps
    Shengchuan Zhang
    Songlin Yu
    Haixin Ding
    Jie Hu
    Liujuan Cao
    [J]. Neural Processing Letters, 2023, 55 : 10483 - 10499
  • [9] End-to-end deep metric network for visual tracking
    Shengjing Tian
    Shuwei Shen
    Guoqiang Tian
    Xiuping Liu
    Baocai Yin
    [J]. The Visual Computer, 2020, 36 : 1219 - 1232
  • [10] End-to-end deep metric network for visual tracking
    Tian, Shengjing
    Shen, Shuwei
    Tian, Guoqiang
    Liu, Xiuping
    Yin, Baocai
    [J]. VISUAL COMPUTER, 2020, 36 (06): : 1219 - 1232