STATISTICAL ANALYSIS OF k-NEAREST NEIGHBOR COLLABORATIVE RECOMMENDATION

被引:19
|
作者
Biau, Gerard [1 ,2 ]
Cadre, Benoit [3 ]
Rouviere, Laurent [4 ]
机构
[1] Univ Paris 06, LSTA, F-75013 Paris, France
[2] Univ Paris 06, LPMA, F-75013 Paris, France
[3] UEB, IRMAR, ENS CACHAN BRETAGNE, CNRS, F-35170 Bruz, France
[4] UEB, IRMAR, CREST ENSAI, F-35172 Bruz, France
来源
ANNALS OF STATISTICS | 2010年 / 38卷 / 03期
关键词
Collaborative recommendation; cosine-type similarity; nearest neighbor estimate; consistency; rate of convergence; SYSTEMS;
D O I
10.1214/09-AOS759
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Collaborative recommendation is an information-filtering technique that attempts to present information items that are likely of interest to an Internet user. Traditionally, collaborative systems deal with situations with two types of variables, users and items. In its most common form, the problem is framed as trying to estimate ratings for items that have not yet been consumed by a user. Despite wide-ranging literature, little is known about the statistical properties of recommendation systems. In fact, no clear probabilistic model even exists which would allow us to precisely describe the mathematical forces driving collaborative filtering. To provide an initial contribution to this, we propose to set out a general sequential stochastic model for collaborative recommendation. We offer an in-depth analysis of the so-called cosine-type nearest neighbor collaborative method, which is one of the most widely used algorithms in collaborative filtering, and analyze its asymptotic performance as the number of users grows. We establish consistency of the procedure under mild assumptions on the model. Rates of convergence and examples are also provided.
引用
收藏
页码:1568 / 1592
页数:25
相关论文
共 50 条
  • [1] Comparative Analysis of K-Nearest Neighbor and Modified K-Nearest Neighbor Algorithm for Data Classification
    Okfalisa
    Mustakim
    Gazalba, Ikbal
    Reza, Nurul Gayatri Indah
    2017 2ND INTERNATIONAL CONFERENCES ON INFORMATION TECHNOLOGY, INFORMATION SYSTEMS AND ELECTRICAL ENGINEERING (ICITISEE): OPPORTUNITIES AND CHALLENGES ON BIG DATA FUTURE INNOVATION, 2017, : 294 - 298
  • [2] Fast Collaborative Filtering with a k-Nearest Neighbor Graph
    Park, Youngki
    Park, Sungchan
    Lee, Sang-goo
    Jung, Woosung
    2014 INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2014, : 92 - +
  • [3] Analysis of the k-nearest neighbor classification
    Li, Jing
    Cheng, Ming
    INFORMATION SCIENCE AND MANAGEMENT ENGINEERING, VOLS 1-3, 2014, 46 : 1911 - 1917
  • [4] Optimization of the Neighbor Parameter of k-Nearest Neighbor Algorithm for Collaborative Filtering
    Vaghela, Vimalkumar B.
    Pathak, Himalay H.
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMMUNICATION AND NETWORKS, 2017, 508 : 87 - 93
  • [5] A Scalable K-Nearest Neighbor Algorithm for Recommendation System Problems
    Sagdic, A.
    Tekinbas, C.
    Arslan, E.
    Kucukyilmaz, T.
    2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 186 - 191
  • [6] Fuzzy Monotonic K-Nearest Neighbor Versus Monotonic Fuzzy K-Nearest Neighbor
    Zhu, Hong
    Wang, Xizhao
    Wang, Ran
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (09) : 3501 - 3513
  • [7] Collaborative filtering recommendation based on K-nearest neighbor and non-negative matrix factorization algorithm
    Sun, Yu
    Liu, Qicheng
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [8] Hater maturity oriented k-nearest neighbor collaborative filtering algorithms
    Chen Bo
    Zhou Mingtian
    CHINESE JOURNAL OF ELECTRONICS, 2007, 16 (04): : 584 - 590
  • [9] COLLABORATIVE REPRESENTATION BASED K-NEAREST NEIGHBOR CLASSIFIER FOR HYPERSPECTRAL IMAGERY
    Li, Wei
    Du, Qian
    Zhang, Fan
    Hu, Wei
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,
  • [10] ANALYSIS OF K-NEAREST NEIGHBOR BRANCH AND BOUND RULES
    LARSEN, S
    KANAL, LN
    PATTERN RECOGNITION LETTERS, 1986, 4 (02) : 71 - 77