Lower bounds in minimum rank problems

被引:18
|
作者
Mitchell, Lon H. [1 ]
Narayan, Sivaram K. [2 ]
Zimmer, Andrew M. [3 ]
机构
[1] Virginia Commonwealth Univ, Dept Math, Richmond, VA 23284 USA
[2] Cent Michigan Univ, Dept Math, Mt Pleasant, MI 48859 USA
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
Minimum rank; Minimum semidefinite rank; Zero forcing set; GRAPHS; REPRESENTATIONS; MATRICES;
D O I
10.1016/j.laa.2009.08.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The minimum rank of a graph is the smallest possible rank among all real symmetric matrices with the given graph. The minimum semidefinite rank of a graph is the minimum rank among Hermitian positive semidefinite matrices with the given graph. We explore connections between OS-sets and a lower bound for minimum rank related to zero forcing sets as well as exhibit graphs for which the difference between the minimum semidefinite rank and these lower bounds can be arbitrarily large. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:430 / 440
页数:11
相关论文
共 50 条
  • [1] Lower bounds for minimum semidefinite rank from orthogonal removal and chordal supergraphs
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Zimmer, Andrew M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) : 525 - 536
  • [2] Lower Bounds on Stabilizer Rank
    Peleg, Shir
    Shpilka, Amir
    Volk, Ben Lee
    [J]. QUANTUM, 2022, 6
  • [3] Minimum rank problems
    Hogben, Leslie
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (08) : 1961 - 1974
  • [4] Bounds on minimum semidefinite rank of graphs
    Narayan, Sivaram K.
    Sharawi, Yousra
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (04): : 774 - 787
  • [5] Lower bounds on the rank and symmetric rank of real tensors
    Wang, Kexin
    Seigal, Anna
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2023, 118 : 69 - 92
  • [6] Equations for Lower Bounds on Border Rank
    Hauenstein, Jonathan D.
    Ikenmeyer, Christian
    Landsberg, J. M.
    [J]. EXPERIMENTAL MATHEMATICS, 2013, 22 (04) : 372 - 383
  • [7] NOTE ON LOWER BOUNDS FOR THE RANK OF A MATRIX
    CHEN, G
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 55 (DEC) : 125 - 132
  • [8] Lower and upper bounds for minimum energy broadcast and sensing problems in sensor networks
    Chelius, Guillaume
    Fleury, Eric
    Mignon, Thierry
    [J]. INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2006, 21 (06) : 405 - 422
  • [9] Lower Bounds for the Parameterized Complexity of Minimum Fill-in and Other Completion Problems
    Bliznets, Ivan
    Cygan, Marek
    Komosa, Pawel
    Pilipczuk, Michal
    Mach, Lukas
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2020, 16 (02)
  • [10] LOWER BOUNDS FOR MINIMUM COVARIANCE MATRICES IN TIME-SERIES REGRESSION PROBLEMS
    YLVISAKER, N
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01): : 362 - &