Bifurcation of traveling waves in extrinsic semiconductors

被引:13
|
作者
Katzengruber, B [1 ]
Krupa, M [1 ]
Szmolyan, P [1 ]
机构
[1] Vienna Tech Univ, Inst Angew & Numer Math, A-1040 Vienna, Austria
来源
PHYSICA D | 2000年 / 144卷 / 1-2期
基金
奥地利科学基金会;
关键词
traveling waves; singular perturbations; global bifurcations; semiconductors;
D O I
10.1016/S0167-2789(00)00030-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the bifurcation of traveling waves in a standard model of electrical conduction in extrinsic semiconductors. In scaled variables the corresponding traveling wave problem is a singularly perturbed nonlinear three-dimensional o.d.e. system. The relevant bifurcation parameters are the wave speed s and the total current j. By means of geometric singular perturbation theory it suffices to analyze a two-dimensional reduced problem. Depending on the relative size of s and a dimensionless small parameter beta different types of traveling waves exist. For 0 less than or equal to s much less than beta the only waves are fronts corresponding to heteroclinic orbits. For beta much less than s similar fronts - but with left and right states reversed - exist. The transition between these regimes occurs for s = O(beta) in a complicated global bifurcation involving a Hopf bifurcation, bifurcation of multiple periodic orbits, and heteroclinic and homoclinic bifurcations. We present a consistent bifurcation diagram which is confirmed by numerical computations. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 50 条
  • [1] COMPLEX GINZBURG-LANDAU EQUATION FOR NONLINEAR TRAVELING WAVES IN EXTRINSIC SEMICONDUCTORS
    CHRISTEN, T
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1995, 97 (03): : 473 - 479
  • [2] TRAVELING WAVES IN GAAS SEMICONDUCTORS
    SZMOLYAN, P
    PHYSICA D-NONLINEAR PHENOMENA, 1989, 39 (2-3) : 393 - 404
  • [3] GLOBAL BIFURCATION TO TRAVELING WAVES IN AXISYMMETRIC CONVECTION
    TUCKERMAN, LS
    BARKLEY, D
    PHYSICAL REVIEW LETTERS, 1988, 61 (04) : 408 - 411
  • [4] The Dynamics of Periodic Traveling Interfacial Electrohydrodynamic Waves: Bifurcation and Secondary Bifurcation
    Dai, Guowei
    Xu, Fei
    Zhang, Yong
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (06)
  • [5] Bifurcation Results for Traveling Waves in Nonlinear Magnetic Metamaterials
    Agaoglou, M.
    Rothos, V. M.
    Frantzeskakis, D. J.
    Veldes, G. P.
    Susanto, H.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (11):
  • [6] Traveling waves in trimer granular lattice I: Bifurcation structure of traveling waves in the unit-cell model
    Jayaprakash, K. R.
    Shiffer, A.
    Starosvetsky, Y.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 38 : 8 - 22
  • [7] HOPF-BIFURCATION AND SYMMETRY - TRAVELING AND STANDING WAVES ON THE CIRCLE
    VANGILS, SA
    MALLETPARET, J
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1986, 104 : 279 - 307
  • [8] BIFURCATION TO STANDING AND TRAVELING WAVES IN LARGE ARRAYS OF COUPLED LASERS
    LI, RD
    ERNEUX, T
    PHYSICAL REVIEW A, 1994, 49 (02): : 1301 - 1312
  • [9] Bifurcation of traveling waves related to the Benard equations with an exterior force
    Scarpellini, B
    NONLINEAR ELLIPTIC AND PARABOLIC PROBLEMS: A SPECIAL TRIBUTE TO THE WORK OF HERBERT AMANN, MICHEL CHIPOT AND JOACHIM ESCHER, 2005, 64 : 433 - 462
  • [10] RELATIVE POINCARE - HOPF BIFURCATION AND GALLOPING INSTABILITY OF TRAVELING WAVES
    Texier, Benjamin
    Zumbrun, Kevin
    METHODS AND APPLICATIONS OF ANALYSIS, 2005, 12 (04) : 349 - 380