Embedding of hyperbolic groups into products of binary trees

被引:20
|
作者
Buyalo, Sergei
Dranishnikov, Alexander
Schroeder, Viktor
机构
[1] Inst RAS, St Petersburg Dept Steklov Math, St Petersburg 191023, Russia
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[3] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
关键词
D O I
10.1007/s00222-007-0045-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that every Gromov hyperbolic group Gamma admits a quasi-isometric embedding into the product of n+1 binary trees, where n=dim partial derivative(infinity) Gamma is the topological dimension of the boundary at infinity of Gamma.
引用
收藏
页码:153 / 192
页数:40
相关论文
共 50 条