Dynamic System Identification Using A Type-2 Recurrent Fuzzy Neural Network

被引:0
|
作者
Juang, Chia-Feng [1 ]
Lin, Yang-Yin [1 ]
Chung, I-Fang [2 ]
机构
[1] Natl Chung Hsing Univ, Dept Elect Engn, Taichung 402, Taiwan
[2] Natl Yang Ming Univ, Inst Biomed Informat, Taipei, Taiwan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes an Interval Type-2 Recurrent Fuzzy Neural Network (IT2RFNN) for dynamic system identification. The antecedent parts in each recurrent fuzzy rule in the IT2RFNN are interval type-2 fuzzy sets, and the consequent part is of the Takagi-Sugeno-Kang (TSK) type with interval weights. The recurrent structure in the T2RFNN enables it to handle dynamic system identification problems with a priori knowledge of system input and output delay numbers. A T2RFNN is constructed using concurrent structure and parameter learning. Simulations on dynamic system identification with clean and noisy outputs verify the performance of T2RFNN.
引用
收藏
页码:768 / 772
页数:5
相关论文
共 50 条
  • [1] Nonlinear System Identification Using Type-2 Fuzzy Recurrent Wavelet Neural Network
    Tafti, Bibi Elham Fallah
    Khanesar, Mojtaba Ahmadieh
    Teshnehlab, Mohammad
    [J]. 2019 7TH IRANIAN JOINT CONGRESS ON FUZZY AND INTELLIGENT SYSTEMS (CFIS), 2019, : 75 - 78
  • [2] An Internal/Interconnection Recurrent Type-2 Fuzzy Neural Network (IRT2FNN) for Dynamic System Identification
    Lin, Yang-Yin
    Chang, Jyh-Yeong
    Lin, Chin-Teng
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010), 2010,
  • [3] Nonlinear dynamic systems identification using recurrent interval type-2 TSK fuzzy neural network - A novel structure
    El-Nagar, Ahmad M.
    [J]. ISA TRANSACTIONS, 2018, 72 : 205 - 217
  • [4] Dynamic system identification using a recurrent compensatory fuzzy neural network
    Lee, Chi-Yung
    Lin, Cheng-Jian
    Chen, G-Hung
    Chang, Chun-Lung
    [J]. 2008, Institute of Control, Robotics and Systems (06)
  • [5] Dynamic system identification using a recurrent compensatory fuzzy neural network
    Lee, Chi-Yung
    Lin, Cheng-Jian
    Chen, Cheng-Hung
    Chang, Chun-Lung
    [J]. INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2008, 6 (05) : 755 - 766
  • [6] Evolving Type-2 Recurrent Fuzzy Neural Network
    Pratama, Mahardhika
    Lughofer, Edwin
    Er, Meng Joo
    Rahayu, Wenny
    Dillon, Tharam
    [J]. 2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1841 - 1848
  • [7] A type-2 fuzzy wavelet neural network for system identification and control
    Abiyev, Rahib H.
    Kaynak, Okyay
    Kayacan, Erdal
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (07): : 1658 - 1685
  • [8] A Recurrent Interval Type-2 Fuzzy Neural Network with Asymmetric Membership Functions for Nonlinear System Identification
    Lee, Ching-Hung
    Hu, Tzu-Wei
    Lee, Chung-Ta
    Lee, Yu-Chia
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2008, : 1498 - 1504
  • [9] A Recurrent Self-Evolving Interval Type-2 Fuzzy Neural Network for Dynamic System Processing
    Juang, Chia-Feng
    Huang, Ren-Bo
    Lin, Yang-Yin
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2009, 17 (05) : 1092 - 1105
  • [10] Systems identification using type-2 fuzzy neural network (Type-2 FNN) systems
    Lee, CH
    Lin, YC
    Lai, WY
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN ROBOTICS AND AUTOMATION, VOLS I-III, PROCEEDINGS, 2003, : 1264 - 1269