Discontinuous Petrov-Galerkin Method for Compressible Viscous Flows in Three Dimensions

被引:0
|
作者
Rachowicz, Waldemar [1 ]
Zdunek, Adam [2 ]
Cecot, Witold [1 ]
机构
[1] Cracow Univ Technol, Ul Warszawska 24, PL-31155 Krakow, Poland
[2] HB BerRit, Solhemsbackarna 73, SE-16356 Spanga, Sweden
关键词
DPG METHOD;
D O I
10.1063/5.0008211
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Discontinuous Petrov-Galerkin (DPG) method allows one to construct stable finite element schemes for some classes of singularily perturbed problems like, for instance, convection-dominated diffusion. The central ingredient of the method is a special weak formulation characterized by a relaxed interelement continuity of approximation. It satisfies the inf-sup stability condition with the stability constant independent of the small parameter of perturbation. This technology was applied by Chan et al. in [1] to develop a scheme for simulation of the two-dimensional compressible Navier-Stokes equations. In this paper we extend that work to three dimensions. We present the necessary modifications, the details of the functional setting, the discrete trial and test finite element spaces, and the final form of the algorithm. The issues of a posteriori error estimation and h-adaptivity of finite element meshes are addressed. The technique is illustrated with a few preliminary numerical examples.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A discontinuous Petrov-Galerkin method for compressible Navier-Stokes equations in three dimensions
    Rachowicz, Waldemar
    Zdunek, Adam
    Cecot, Witold
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 102 : 113 - 136
  • [2] Discontinuous Galerkin and Petrov Galerkin methods for compressible viscous flows
    Wang, Li
    Anderson, W. Kyle
    Erwin, J. Taylor
    Kapadia, Sagar
    [J]. COMPUTERS & FLUIDS, 2014, 100 : 13 - 29
  • [3] The discontinuous Petrov-Galerkin method for elliptic problems
    Bottasso, CL
    Micheletti, S
    Sacco, R
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (31) : 3391 - 3409
  • [4] MESHLESS LOCAL PETROV-GALERKIN (MLPG) METHOD FOR INCOMPRESSIBLE VISCOUS FLUID FLOWS
    Mohammadi, Mohammad Haji
    [J]. PROCEEDINGS OF THE ASME FLUIDS ENGINEERING DIVISION SUMMER CONFERENCE, VOL 2, 2006, : 369 - 379
  • [5] PETROV-GALERKIN FINITE-ELEMENT MODEL FOR COMPRESSIBLE FLOWS
    BRUECKNER, FP
    HEINRICH, JC
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1991, 32 (02) : 255 - 274
  • [6] A SCALABLE PRECONDITIONER FOR A PRIMAL DISCONTINUOUS PETROV-GALERKIN METHOD
    Barker, A. T.
    Dobrev, V.
    Gopalakrishnan, J.
    Kolev, T.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (02): : A1187 - A1203
  • [7] DOMAIN DECOMPOSITION PRECONDITIONERS FOR THE DISCONTINUOUS PETROV-GALERKIN METHOD
    Li, Xiang
    Xu, Xuejun
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (03): : 1021 - 1044
  • [8] A discontinuous Galerkin ALE method for compressible viscous flows in moving domains
    Lomtev, I
    Kirby, RM
    Karniadakis, GE
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 155 (01) : 128 - 159
  • [9] The discontinuous Petrov-Galerkin method for one-dimensional compressible Euler equations in the Lagrangian coordinate
    赵国忠
    蔚喜军
    郭鹏云
    [J]. Chinese Physics B, 2013, (05) : 100 - 107
  • [10] Moving element free Petrov-Galerkin viscous method
    Ghorbany, M
    Soheili, AR
    [J]. JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2004, 27 (04) : 473 - 479