Weighted nonparametric regression

被引:2
|
作者
Delicado, P
delRio, M
机构
[1] UNIV POMPEU FABRA,DEPT ECON & EMPRESA,BARCELONA 08005,SPAIN
[2] UNIV COMPLUTENSE,DEPT ESTADIST & IO,MADRID 28040,SPAIN
关键词
asymptotic behavior; fixed design; kernel regression; local polynomial estimators; smoothing;
D O I
10.1080/03610929708832089
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In the fixed design regression model, additional weights are considered for the Nadaraya-Watson and Gasser-Muller kernel estimators. We study their asymptotic behavior and the relationships between new and classical estimators. For a simple family of weights, and considering the AIMSE as global loss criterion, we show some possible theoretical advantages. An empirical study illustrates the performance of the weighted kernel estimators in theoretical ideal situations and in simulated data sets. Also some results concerning the use of weights for local polynomial estimators are given.
引用
收藏
页码:2983 / 2998
页数:16
相关论文
共 50 条