Stable periodic orbits for a predator-prey model with delay

被引:18
|
作者
Cavani, M [1 ]
Lizana, M
Smith, HL
机构
[1] Univ Oriente, Dept Math Nucleo Sucre, Cumana, Venezuela
[2] Univ Los Andes, Fac Sci, Dept Math, Merida 5101, Venezuela
[3] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
关键词
predator-prey model; stable periodic orbit; delay; uniform persistence;
D O I
10.1006/jmaa.2000.6802
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a predator-prey model with time lag which improves upon that proposed by Cavani and Farkas [1994, Acta Math. Hungar. 63(3), 213-229]. We show that when the model has exactly one non-trivial unstable and hyperbolic equilibrium there exists a stable periodic orbit, (C) 2000 Academic Press.
引用
收藏
页码:324 / 339
页数:16
相关论文
共 50 条
  • [1] A STAGE STRUCTURED PREDATOR-PREY MODEL WITH PERIODIC ORBITS
    Feng, Miao
    Jiang, Jifa
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, : 2846 - 2883
  • [2] Periodic solutions of a periodic delay predator-prey system
    Li, YK
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (05) : 1331 - 1335
  • [3] Nonhomogeneous periodic patterns in a predator-prey model with time delay and predator-taxis
    Jia, Caijuan
    Meng, Yan
    Xiao, Jiaxin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 452
  • [4] Stable periodic traveling waves for a predator-prey model with non-constant death rate and delay
    Duque, Cosme
    Lizana, Marcos
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (23) : 9717 - 9722
  • [5] A PERIODIC AND DIFFUSIVE PREDATOR-PREY MODEL WITH DISEASE IN THE PREY
    Li, Xiaoling
    Hu, Guangping
    Feng, Zhaosheng
    Li, Dongliang
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (03): : 445 - 461
  • [6] Periodic solution for a predator-prey system with distributed delay
    Lin, GJ
    Yuan, R
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2005, 42 (9-10) : 959 - 966
  • [7] Cannibalistic Predator-Prey Model with Disease in Predator - A Delay Model
    Biswas, Santosh
    Samanta, Sudip
    Chattopadhyay, Joydev
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (10):
  • [8] Stable periodic solution of the discrete periodic Leslie-Gower predator-prey model
    Huo, HF
    Li, WT
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2004, 40 (3-4) : 261 - 269
  • [9] Turing-Hopf bifurcation and bi-stable spatiotemporal periodic orbits in a delayed predator-prey model with predator-taxis
    Xing, Yue
    Jiang, Weihua
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 533 (01)
  • [10] Periodic solutions for a neutral delay predator-prey model with nonmonotonic functional response
    Duan, Lian
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2012, (48)