Remarks on the semivariation of vector measures with respect to banach spaces.

被引:2
|
作者
Blasco, Oscar [1 ]
机构
[1] Univ Valencia, Dept Math, E-46100 Burjassot, Spain
关键词
D O I
10.1017/S0004972700039393
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that L-q(nu)(circle times) over cap Y-gamma q = L-q(nu,Y) and X (circle times) over cap L-Delta p(p)(mu) = L-P(mu,X). It is shown that any L-P(mu)-valued measure has finite L-2 (nu)-semivariation with respect to the tensor norm L-2(nu)(circle times) over cap L-Delta p(p)(mu) for 1 <= p < infinity and finite L-q (nu)-semivaxiation with respect to the tensor norm L-q (nu)(circle times) over cap L-gamma q(p)(mu) whenever either q = 2 and 1 <= p <= 2 or q > max{p, 2}. However there exist measures with infinite L-q-semivaxiation with respect to the tensor norm L-q (nu)(circle times) over cap L-gamma q(p)(mu) for any 1 <= q < 2. It is also shown that the measure m(A) = chi A has infinite Lq -semivaxiation with respect to the tensor norm L-q (nu)(circle times) over cap L-gamma q(p)(mu) if q < p.
引用
收藏
页码:469 / 480
页数:12
相关论文
共 50 条