Generalized hurdle count data regression models

被引:49
|
作者
Gurmu, S [1 ]
机构
[1] Univ Virginia, Dept Econ, Charlottesville, VA 22903 USA
关键词
two-part model; double Poisson; generalized logit; heteroscedasticity;
D O I
10.1016/S0165-1765(97)00295-4
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper considers generalized hurdle models suitable for the analysis of overdispersed or underdispersed count data. The first stage allows for asymmetric departures from the binary logit model. An application using Medicaid utilization data is given. (C) 1998 Elsevier Science S.A.
引用
收藏
页码:263 / 268
页数:6
相关论文
共 50 条
  • [1] Generalized bivariate count data regression models
    Gurmu, S
    Elder, J
    [J]. ECONOMICS LETTERS, 2000, 68 (01) : 31 - 36
  • [2] Generalized Count Data Regression Models and Their Applications to Health Care Data
    Lee C.
    Famoye F.
    Akinsete A.
    [J]. Annals of Data Science, 2021, 8 (02) : 367 - 386
  • [3] EXTENSIONS OF HURDLE MODELS FOR OVERDISPERSED COUNT DATA
    Farbmacher, Helmut
    [J]. HEALTH ECONOMICS, 2013, 22 (11) : 1398 - 1404
  • [4] Estimation of hurdle models for overdispersed count data
    Farbmacher, Helmut
    [J]. STATA JOURNAL, 2011, 11 (01): : 82 - 94
  • [5] Hurdle count data models in recreation demand analysis
    Shonkwiler, JS
    Shaw, WD
    [J]. JOURNAL OF AGRICULTURAL AND RESOURCE ECONOMICS, 1996, 21 (02): : 210 - 219
  • [6] Influence analysis for count data based on generalized Poisson regression models
    Xie, Feng-Chang
    Wei, Bo-Cheng
    [J]. STATISTICS, 2010, 44 (04) : 341 - 360
  • [7] Investigating the impact of excess zeros on hurdle-generalized Poisson regression model with right censored count data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    Greene, William
    [J]. STATISTICA NEERLANDICA, 2013, 67 (01) : 67 - 80
  • [8] Generalized hurdle count data models based on interpretable machine learning with an application to health care demand
    Xu, Xin
    Ye, Tao
    Gao, Jieying
    Chu, Dongxiao
    [J]. COMPUTING, 2024, 106 (02) : 295 - 325
  • [9] Generalized hurdle count data models based on interpretable machine learning with an application to health care demand
    Xin Xu
    Tao Ye
    Jieying Gao
    Dongxiao Chu
    [J]. Computing, 2024, 106 : 295 - 325
  • [10] Hurdle negative binomial regression model with right censored count data
    Saffari, Seyed Ehsan
    Adnan, Robiah
    Greene, William
    [J]. SORT, 2012, 36 (02): : 181 - 194