Optimal ellipsoids and decomposition of positive definite matrices

被引:1
|
作者
Leung, Yuk J. [1 ]
Li, Wenbo V. [1 ]
Rakesh [1 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会;
关键词
ellipsoid; determinant maximization; John's theorem;
D O I
10.1016/j.jmaa.2006.09.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a positive definite matrix A, we characterize the unique diagonal matrix D, D >= A, with the smallest determinant. Equivalently, given an ellipsoid A, we characterize the unique ellipsoid of the largest volume contained in A, with principal axes parallel to the coordinate axes. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1452 / 1466
页数:15
相关论文
共 50 条
  • [1] Analog approach for the Eigen-decomposition of positive definite matrices
    Luo, FL
    Unbehauen, R
    Reif, K
    Li, YD
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (11) : 49 - 61
  • [2] Positive Definite matrices
    Cobzas, S.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (02): : 143 - 144
  • [3] POSITIVE DEFINITE MATRICES
    JOHNSON, CR
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (03): : 259 - &
  • [4] POSITIVE DEFINITE MATRICES
    FOREGGER, T
    SMILEY, MF
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (01): : 59 - 59
  • [5] AN OPTIMAL POSITIVE-DEFINITE UPDATE FOR SPARSE HESSIAN MATRICES
    FLETCHER, R
    SIAM JOURNAL ON OPTIMIZATION, 1995, 5 (01) : 192 - 218
  • [6] RIEMANNIAN GEOMETRY OF SYMMETRIC POSITIVE DEFINITE MATRICES VIA CHOLESKY DECOMPOSITION
    Lin, Zhenhua
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2019, 40 (04) : 1353 - 1370
  • [7] On a decomposition lemma for positive semi-definite block-matrices
    Bourin, Jean-Christophe
    Lee, Eun-Young
    Lin, Minghua
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) : 1906 - 1912
  • [8] Positive powers of positive positive definite matrices
    Rosen, L
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (01): : 196 - 209
  • [9] Ordering positive definite matrices
    Mostajeran C.
    Sepulchre R.
    Information Geometry, 2018, 1 (2) : 287 - 313
  • [10] POSITIVE DEFINITE HERMITIAN MATRICES
    KIRBY, D
    MATRIX AND TENSOR QUARTERLY, 1972, 23 (01): : 31 - &