Using group theory for knowledge representation and discovery

被引:0
|
作者
Kern-Isberner, Gabriele [1 ]
机构
[1] Univ Dortmund, Dept Comp Sci, D-44221 Dortmund, Germany
关键词
combinatorial group theory; knowledge discovery; knowledge representation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present an approach to extract most relevant information from data given in form of a probability distribution. Relevance here is meant with respect to some appropriate inductive inference process, like maximum entropy inference (ME-inference) in probabilistics. So in particular, the method developed in this paper is apt to solve the inverse maxent problem, computing from a distribution in a non-heuristic way a set of conditionals that ME-represents that distribution. Since we only make use of one special characteristic of ME-inference, this method may as well be applied to other, similar inference processes.
引用
收藏
页码:169 / 186
页数:18
相关论文
共 50 条
  • [1] Knowledge representation for computational thinking using knowledge discovery computing
    Lee, Youngseok
    Cho, Jungwon
    INFORMATION TECHNOLOGY & MANAGEMENT, 2020, 21 (01): : 15 - 28
  • [2] Knowledge representation for computational thinking using knowledge discovery computing
    Youngseok Lee
    Jungwon Cho
    Information Technology and Management, 2020, 21 : 15 - 28
  • [3] CONTINUOUS REPRESENTATION THEORY USING AFFINE GROUP
    ASLAKSEN, EW
    KLAUDER, JR
    JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (12) : 2267 - &
  • [4] A THEORY FOR THE REPRESENTATION OF KNOWLEDGE
    GUENTHNER, F
    LEHMANN, H
    SCHONFELD, W
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1986, 30 (01) : 39 - 56
  • [5] Knowledge discovery in distributed databases using evidence theory
    Cai, D.
    McTear, M.F.
    McClean, S.I.
    2000, John Wiley & Sons Inc, New York, NY, United States (15)
  • [6] Knowledge discovery in distributed databases using evidence theory
    Cai, D
    McTear, MF
    McClean, SI
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2000, 15 (08) : 745 - 761
  • [7] The role of classification in knowledge representation and discovery
    Kwasnik, BH
    LIBRARY TRENDS, 1999, 48 (01) : 22 - 47
  • [8] Knowledge Representation and Discovery Using Formal Concept Analysis: An HRM Application
    Bal, M.
    Bal, Y.
    Ustundag, A.
    WORLD CONGRESS ON ENGINEERING, WCE 2011, VOL II, 2011, : 1068 - 1073
  • [9] GROUP REPRESENTATION THEORY AND BIFURCATION THEORY
    SATTINGER, DH
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A153 - A153
  • [10] A fuzzy genetic algorithm for the discovery of process parameter settings using knowledge representation
    Lau, H. C. W.
    Tang, C. X. H.
    Ho, G. T. S.
    Chan, T. M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (04) : 7964 - 7974