Nonlinear evolution equations with gradient coupled noise

被引:5
|
作者
Benth, FE [1 ]
Deck, T
Pothoff, J
Streit, L
机构
[1] Univ Oslo, N-0316 Oslo, Norway
[2] Univ Mannheim, D-68131 Mannheim, Germany
[3] Univ Bielefeld, BiBoS, D-33615 Bielefeld, Germany
[4] Univ Madeira, P-9000 Funchal, Portugal
关键词
Burgers equation; Korteweg-de Vries equation;
D O I
10.1023/A:1007456027371
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show existence and uniqueness of solutions for a class of nonlinear evolution equations with gradient coupled noise. Our results are obtained by using a simple transformation relating the equation under consideration to an underlying deterministic partial differential equation. Both the It (o) over cap and the Stratonovich conventions are treated. Several examples show that the properties of solutions for It (o) over cap equations can differ significantly from those of Stratonovich equations.
引用
下载
收藏
页码:267 / 278
页数:12
相关论文
共 50 条
  • [1] Nonlinear Evolution Equations with Gradient Coupled Noise
    F. E. Benth
    Th. Deck
    J. Potthoff
    L. Streit
    Letters in Mathematical Physics, 1998, 43 : 267 - 278
  • [2] Nonlinear diffusion equations with nonlinear gradient noise
    Dareiotis, Konstantinos
    Gess, Benjamin
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25
  • [3] RESONANTLY COUPLED NONLINEAR EVOLUTION EQUATIONS
    ABLOWITZ, MJ
    HABERMAN, R
    JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (11) : 2301 - 2305
  • [4] Stochastic Nonlinear Parabolic Equations with Stratonovich Gradient Noise
    Barbu, Viorel
    Brzezniak, Zdzislaw
    Tubaro, Luciano
    APPLIED MATHEMATICS AND OPTIMIZATION, 2018, 78 (02): : 361 - 377
  • [5] Stochastic Nonlinear Parabolic Equations with Stratonovich Gradient Noise
    Viorel Barbu
    Zdzisław Brzeźniak
    Luciano Tubaro
    Applied Mathematics & Optimization, 2018, 78 : 361 - 377
  • [6] Exact solutions of coupled nonlinear evolution equations
    Yusufoglu, Elcin
    Bekir, Ahmet
    CHAOS SOLITONS & FRACTALS, 2008, 37 (03) : 842 - 848
  • [7] THOM’S GRADIENT CONJECTURE FOR NONLINEAR EVOLUTION EQUATIONS
    Choi, Beomjun
    Hung, Pei-Ken
    arXiv,
  • [8] The evolution of periodic waves of the coupled nonlinear Schrodinger equations
    Tsang, SC
    Chow, KW
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2004, 66 (06) : 551 - 564
  • [10] A Conjugate Gradient Method for Inverse Problems of Nonlinear Coupled Diffusion Equations
    Wang Shuai
    Xu Baiyan
    Liu Tao
    2020 3RD INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SCIENCE AND APPLICATION TECHNOLOGY (CISAT) 2020, 2020, 1634