We have previously reported that the serotonin 5-HT1A agonist 8-OH-DPAT and the 5-HT2C agonist TFMPP impair performance on a water maze. In the present report we extended those studies by examining a second 5-HT1A agonist, buspirone, to see whether its effects paralleled those of 8-OH-DPAT, and by testing the effects of the 5-HT2 agonist DOI. Unlike the open pool Morris water maze, the maze used in these experiments has alleys and doorways. The maze can be easily reconfigured to present rats with both previously learned or new maze challenges. Performance is assessed by time to reach the maze exit platform and the number of wrong doorways entered (errors). At doses that did not affect performance in a previously learned maze, the 5-HT1A agonists 8-OH-DPAT (0.1 mg/kg) and buspirone (1 mg/kg) slowed acquisition of a new maze configuration as measured by both swim time to the exit platform and errors committed. A higher dose of buspirone (10 mg/kg) completely blocked acquisition of a novel maze. In contrast, DOI slowed performance as assessed by swim time on both a well-learned maze as well as acqui sition of a new maze, but did not affect error rate on either task, suggesting that this 5-HT2 agonist impaired performance by depressing motor activity. These experiments demonstrate that serotonin agonists, especially the 5-HT1A subtype, can impair learning. (C) 1998 Elsevier Science Inc.