An accelerated staggered scheme for variational phase-field models of brittle fracture

被引:29
|
作者
Storvik, Erlend [1 ]
Both, Jakub Wiktor [1 ]
Sargado, Juan Michael [2 ]
Nordbotten, Jan Martin [1 ]
Radu, Florin Adrian [1 ]
机构
[1] Univ Bergen, Dept Math, Allegaten 44, N-5007 Bergen, Norway
[2] Technol Univ Denmark, Danish Hydrocarbon Res & Technol Ctr, Elektrovej Bygning 375, DK-2800 Lyngby, Denmark
关键词
Variational brittle fracture; Phase-field modeling; Staggered scheme; Anderson acceleration; Relaxation; Nonlinear solver; NUMERICAL IMPLEMENTATION; ANDERSON ACCELERATION; PROPAGATION;
D O I
10.1016/j.cma.2021.113822
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
There is currently an increasing interest in developing efficient solvers for variational phase-field models of brittle fracture. The governing equations for this problem originate from a constrained minimization of a non-convex energy functional, and the most commonly used solver is a staggered solution scheme. This is known to be robust compared to the monolithic Newton method, however, the staggered scheme often requires many iterations to converge when cracks are evolving. The focus of our work is to accelerate the solver through a scheme that sequentially applies Anderson acceleration and over-relaxation, switching back and forth depending on the residual evolution, and thereby ensuring a decreasing tendency. The resulting scheme takes advantage of the complementary strengths of Anderson acceleration and over-relaxation to make a robust and accelerating method for this problem. The new method is applied as a post-processing technique to the increments of the solver. Hence, the implementation merely requires minor modifications to already available software. Moreover, the cost of the acceleration scheme is negligible. The robustness and efficiency of the method are demonstrated through numerical examples. (C) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:19
相关论文
共 50 条
  • [1] On penalization in variational phase-field models of brittle fracture
    Gerasimov, T.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 354 : 990 - 1026
  • [2] Evaluation of variational phase-field models for dynamic brittle fracture
    Mandal, Tushar Kanti
    Vinh Phu Nguyen
    Wu, Jian-Ying
    ENGINEERING FRACTURE MECHANICS, 2020, 235
  • [3] Crack nucleation in variational phase-field models of brittle fracture
    Tanne, E.
    Li, T.
    Bourdin, B.
    Marigo, J. -J.
    Maurini, C.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2018, 110 : 80 - 99
  • [4] A residual control staggered solution scheme for the phase-field modeling of brittle fracture
    Seles, Karlo
    Lesicar, Tomislav
    Tonkovic, Zdenko
    Soric, Jurica
    ENGINEERING FRACTURE MECHANICS, 2019, 205 : 370 - 386
  • [5] Linear and nonlinear solvers for variational phase-field models of brittle fracture
    Farrell, Patrick
    Maurini, Corrado
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (05) : 648 - 667
  • [6] Phase-field models for brittle and cohesive fracture
    Vignollet, Julien
    May, Stefan
    de Borst, Rene
    Verhoosel, Clemens V.
    MECCANICA, 2014, 49 (11) : 2587 - 2601
  • [7] A STUDY ON PHASE-FIELD MODELS FOR BRITTLE FRACTURE
    Zhang, Fei
    Huang, Weizhang
    LI, Xianping
    Zhang, Shicheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (06) : 793 - 821
  • [8] Phase-field models for brittle and cohesive fracture
    Julien Vignollet
    Stefan May
    René de Borst
    Clemens V. Verhoosel
    Meccanica, 2014, 49 : 2587 - 2601
  • [9] A FFT solver for variational phase-field modeling of brittle fracture
    Chen, Yang
    Vasiukov, Dmytro
    Gelebart, Lionel
    Park, Chung Hae
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 349 : 167 - 190
  • [10] A convergence study of phase-field models for brittle fracture
    Linse, Thomas
    Hennig, Paul
    Kaestner, Markus
    de Borst, Rene
    ENGINEERING FRACTURE MECHANICS, 2017, 184 : 307 - 318