SELF-ADJOINT CYCLICALLY COMPACT OPERATORS AND ITS APPLICATION

被引:0
|
作者
Kudaybergenov, Karimbergen [1 ]
Mukhamedov, Farrukh [2 ]
机构
[1] Karakalpak State Univ, Dept Math, Nukus 230113, Uzbekistan
[2] United Arab Emirates Univ, Coll Sci, Dept Math Sci, Abu Dhabi 15551, U Arab Emirates
关键词
compact operator; cyclically compact operator; von Neumann algebra; MEASURABLE OPERATORS; ALGEBRAS; DERIVATIONS;
D O I
10.4134/BKMS.b160277
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper is devoted to self-adjoint cyclically compact operators on Hilbert-Kaplansky module over a ring of bounded measurable functions. The spectral theorem for such a class of operators is given. We use more simple and constructive method, which allowed to apply this result to compact operators relative to von Neumann algebras. Namely, a general form of compact operators relative to a type I von Neumann algebra is given.
引用
收藏
页码:679 / 686
页数:8
相关论文
共 50 条
  • [1] Spectral decomposition of self-adjoint cyclically compact operators and partial integral equations
    Kudaybergenov, K.
    Mukhamedov, F.
    ACTA MATHEMATICA HUNGARICA, 2016, 149 (02) : 297 - 305
  • [2] Spectral decomposition of self-adjoint cyclically compact operators and partial integral equations
    K. Kudaybergenov
    F. Mukhamedov
    Acta Mathematica Hungarica, 2016, 149 : 297 - 305
  • [3] COMMUTATIVITY OF COMPACT SELF-ADJOINT OPERATORS
    GREINER, G
    RICKER, WJ
    STUDIA MATHEMATICA, 1995, 112 (02) : 109 - 125
  • [4] Functions of self-adjoint operators in ideals of compact operators
    Sobolev, Alexander V.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 95 : 157 - 176
  • [5] On commuting compact self-adjoint operators on a Pontryagin space
    Bhattacharyya, T
    Kosir, T
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 39 (04) : 377 - 386
  • [6] Regular Diagonals of self-adjoint operators I: Compact
    Bownik, Marcin
    Jasper, John
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 289 (05)
  • [7] Unitary subgroups and orbits of compact self-adjoint operators
    Bottazzi, Tamara
    Varela, Alejandro
    STUDIA MATHEMATICA, 2017, 238 (02) : 155 - 176
  • [8] On commuting compact self-adjoint operators on a Pontryagin space
    Tirthankar Bhattacharyya
    Tomaž Koŝir
    Integral Equations and Operator Theory, 2001, 39 : 377 - 386
  • [9] ON EIGENELEMENTS SENSITIVITY FOR COMPACT SELF-ADJOINT OPERATORS AND APPLICATIONS
    El Hamidi, Abdallah
    Hamdouni, Aziz
    Saleh, Marwan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (02): : 445 - 455
  • [10] Spectral asymptotics for compact self-adjoint Hankel operators
    Pushnitski, Alexander
    Yafaev, Dmitri
    JOURNAL OF SPECTRAL THEORY, 2016, 6 (04) : 921 - 953