Adaptive estimation of an additive regression function from weakly dependent data

被引:9
|
作者
Chesneau, Christophe [1 ]
Fadili, Jalal [2 ]
Maillot, Bertrand [1 ]
机构
[1] Univ Caen, LMNO, CNRS, F-14032 Caen, France
[2] Univ Caen, GREYC, CNRS, ENSICAEN, F-14032 Caen, France
关键词
Additive regression; Dependent data; Adaptivity; Wavelets; Hard thresholding; ASYMPTOTIC NORMALITY; SERIES ESTIMATION; MODELS;
D O I
10.1016/j.jmva.2014.09.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A d-dimensional nonparametric additive regression model with dependent observations is considered. Using the marginal integration technique and wavelets methodology, we develop a new adaptive estimator for a component of the additive regression function. Its asymptotic properties are investigated via the minimax approach under the L-2 risk over Besov balls. We prove that it attains a sharp rate of convergence which turns to be the one obtained in the i.i.d. case for the standard univariate regression estimation problem. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:77 / 94
页数:18
相关论文
共 50 条