Homogenization of the Neumann problem for higher order elliptic equations with periodic coefficients

被引:6
|
作者
Suslina, T. A. [1 ]
机构
[1] St Petersburg State Univ, Dept Phys, St Petersburg, Russia
基金
俄罗斯科学基金会;
关键词
Periodic differential operators; higher order elliptic equations; Neumann problem; homogenization; operator error estimates; DIRICHLET PROBLEM; ERROR ESTIMATE; SYSTEMS; OPERATORS;
D O I
10.1080/17476933.2017.1365845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let O subset of R-d be a bounded domain of class C-2p. In L-2(O;C-n), we study a self-adjoint strongly elliptic operator A(N,epsilon) of order 2p given by the expression b(D)*g(x/epsilon)b(D), epsilon > 0, with Neumann boundary conditions. Here, g(x) is a bounded and positive definite matrix-valued function in R-d, periodic with respect to some lattice; b(D) = Sigma(vertical bar alpha vertical bar=p) b(alpha)D(alpha) is a differential operator of order p. The symbol b(xi) is subject to some condition ensuring strong ellipticity of the operator A(N,epsilon). We find approximations for the resolvent (A(N,epsilon )- zeta l) in different operator norms with error estimates depending on epsilon and zeta.
引用
收藏
页码:1185 / 1215
页数:31
相关论文
共 50 条