The greenhouse gas emissions of nuclear energy - Life cycle assessment of a European pressurised reactor

被引:29
|
作者
Pomponi, Francesco [1 ]
Hart, Jim [1 ]
机构
[1] Edinburgh Napier Univ, Sch Engn & Built Environm, Resource Efficient Built Environm Lab REBEL, Edinburgh EH10 5DT, Midlothian, Scotland
关键词
Life cycle assessment (LCA); Nuclear power generators; Sustainable and renewable energy; Electricity; Input-output; Hybrid LCA; ASSESSMENT LCA; POWER; FOOTPRINT; WIND; SUSTAINABILITY; YIELD;
D O I
10.1016/j.apenergy.2021.116743
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Nuclear energy contributes similar to 10% of the global electricity generation and different views exist on its carbon-intensity and sustainability. Context is crucial to determine the sustainability of new nuclear power generators, making the existence of a global answer to the unresolved question unlikely. This study aims to establish the life-cycle greenhouse gas emissions associated with nuclear energy in Europe given ongoing construction of nuclear generators. Due to the high uncertainty and complexity that characterise construction and operation of nuclear generators, we adopt a multi-method, scenario-based approach. The three methods used are: process-based, input-output, and hybrid life cycle assessment. Scenarios account for different total energy outputs over the life cycle of the nuclear generator, different end of life options, and different sectoral allocations of costs in the input-output calculus. Results for the process-based, input-output, and hybrid methods range between 16.55-17.69, 18.82-35.15, and 24.61-32.74 gCO(2)e/kWh, respectively. These are either well above or at the upper end of the range of possibilities (5 to 22 gCO(2)e/kWh) stated in a report for the UK's Committee on Climate Change, and significantly higher than the median value of 12 gCO(2)e/kWh presented by the Intergovernmental Panel on Climate Change. They are also higher than the values acknowledged by the nuclear industry. Given the severe potential lock-in effects of today's energy choices for future generations, this research questions the role of nuclear energy to meet the UN Sustainable Development Goals and calls for further scrutiny on its sustainability and environmental viability.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Life cycle energy and greenhouse gas emissions of nuclear energy: A review
    Lenzen, Manfred
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (08) : 2178 - 2199
  • [2] Greenhouse gas emissions in the nuclear life cycle: A balanced appraisal
    Beerten, Jef
    Laes, Erik
    Meskens, Gaston
    D'haeseleer, William
    [J]. ENERGY POLICY, 2009, 37 (12) : 5056 - 5068
  • [3] Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation
    Warner, Ethan S.
    Heath, Garvin A.
    [J]. JOURNAL OF INDUSTRIAL ECOLOGY, 2012, 16 : S73 - S92
  • [4] Assessment of the life cycle greenhouse gas emissions in the food industry
    Moresi, Mauro
    [J]. AGRO FOOD INDUSTRY HI-TECH, 2014, 25 (03): : 53 - 62
  • [5] Life Cycle Assessment of fossil energy use and greenhouse gas emissions in Chinese pear production
    Liu, Yuexian
    Langer, Vibeke
    Hogh-Jensen, Henning
    Egelyng, Henrik
    [J]. JOURNAL OF CLEANER PRODUCTION, 2010, 18 (14) : 1423 - 1430
  • [6] At the intersection of life cycle assessment and indirect greenhouse gas emissions accounting
    Amma Asantewaa Agyei Boakye
    Terrie Boguski
    Sarah Cashman
    Christoph Koffler
    Ashley Kreuder
    Manish Kumar
    Naveen Kumar Vipparla
    Lisa Peterson
    [J]. The International Journal of Life Cycle Assessment, 2023, 28 : 321 - 335
  • [7] Greenhouse gas emissions from forestry operations: A life cycle assessment
    Sonne, Edie
    [J]. JOURNAL OF ENVIRONMENTAL QUALITY, 2006, 35 (04) : 1439 - 1450
  • [8] At the intersection of life cycle assessment and indirect greenhouse gas emissions accounting
    Boakye, Amma Asantewaa Agyei
    Boguski, Terrie
    Cashman, Sarah
    Koffler, Christoph
    Kreuder, Ashley
    Kumar, Manish
    Vipparla, Naveen Kumar
    Peterson, Lisa
    [J]. INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2023, 28 (04): : 321 - 335
  • [9] Energy use and greenhouse gas emissions in: The life cycle of CdTe photovoltaics
    Fthenakis, Vasilis M.
    Kim, Hyung Chul
    [J]. LIFE-CYCLE ANALYSIS TOOLS FOR GREEN MATERIALS AND PROCESS SELECTION, 2006, 895 : 83 - +
  • [10] Energy analyses and greenhouse gas emissions assessment for saffron production cycle
    Amir Abbas Bakhtiari
    Amir Hematian
    Azin Sharifi
    [J]. Environmental Science and Pollution Research, 2015, 22 : 16184 - 16201