Maximal and Riesz Potential Operators on Musielak-Orlicz Spaces Over Metric Measure Spaces

被引:13
|
作者
Ohno, Takao [1 ]
Shimomura, Tetsu [2 ]
机构
[1] Oita Univ, Fac Educ, Oita 8701192, Japan
[2] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
基金
日本学术振兴会;
关键词
Maximal functions; Riesz potentials; Musielak-Orlicz spaces; Sobolev's inequality; Metric measure space; Lower Ahlfors regular; SOBOLEV EMBEDDINGS; GENERALIZED LEBESGUE; VARIABLE EXPONENT; MORREY SPACES; INEQUALITIES; FUNCTIONALS; INTEGRABILITY; BOUNDEDNESS; REGULARITY;
D O I
10.1007/s00020-018-2484-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator M on Musielak-Orlicz spaces L phi(X) over bounded metric measure spaces. As an application of the boundedness of M, we establish a generalization of Sobolev's inequality for Riesz potentials I(),f with f is an element of L-Phi (X).
引用
收藏
页数:18
相关论文
共 50 条