Blow-up of solutions to parabolic equations with nonstandard growth conditions

被引:107
|
作者
Antontsev, S. [1 ]
Shmarev, S. [2 ]
机构
[1] Univ Lisbon, CMAF, P-1699 Lisbon, Portugal
[2] Univ Oviedo, Dept Matemat, Oviedo, Spain
关键词
Nonlinear parabolic PDE; Evolution p(x)-Laplace; Nonstandard growth; Blow-up;
D O I
10.1016/j.cam.2010.01.026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the phenomenon of finite time blow-up in solutions of the homogeneous Dirichlet problem for the parabolic equation u(t) = div (a(x, t)vertical bar del u vertical bar(p(x)-2)del u) + b(x, t)vertical bar u vertical bar(sigma(x, t)-2)u with variable exponents of nonlinearity p(x), sigma(x, t) is an element of (1, infinity). Two different cases are studied. In the case of semilinear equation with p(x) congruent to 2, a(x, t) equivalent to 1, b(x. t) >= b(-) > 0 we show that the finite time blow-up happens if the initial function is sufficiently large and either min(Omega) sigma(x, t) = sigma(-)(t) > 2 for all t > 0, or sigma(-)(t) >= 2, sigma(-)(t) SE arrow 2 as t -> infinity and integral(infinity)(1) e(s(2-sigma-(s))) ds < infinity. In the case of the evolution p(x)-Laplace equation with the exponents p(x), sigma(x) independent of t, we prove that every solution corresponding to a sufficiently large initial function exhibits a finite time blow-up if b(x, t) >= b(-) > 0, a(t) (x, t) <= 0, b(t)(x, t) >= 0, min sigma(x) > 2 and max p(x) <= min sigma(x). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2633 / 2645
页数:13
相关论文
共 50 条