The system free energy was estimated for the martensite phase of an Fe-Cr-C ternary alloy, 12Cr2W and 12Cr2W0.5Re steels. The system free energy of the martensite phase is defined as, G(sys) = G(0) + E-str + E-surf, where G(0) is the chemical free energy, Esurf is the interfacial energy for the boundaries in the martensite microstructure, and E-str is the elastic strain energy due to the dislocations in the martensite phase. From the experimental results on SEM/EBSD, the total interfacial energies were estimated to be 0.83J/mol for the ternary alloy and 4.8J/mol for both 12Cr2W and 12Cr2W0.5Re steels in the as-quenched state. Also, the elastic strain energies were estimated to be 7.1J/mol for the ternary alloy, 9.6J/mol for 12Cr2W steel and 9.8J/mol for 12Cr2W0.5Re steel in the as-quenched state. So, the system free energy was about 7.9J/mol for ternary alloy. On the other hand, the system free energy was about 14.4J/mol for 12Cr2W steel and 14.6J/mol for 12Cr2W0.5Re steel. So, these microstructural energies operate as a driving force for the microstructure evolution, e. g., recovery of dislocations and the coarsening of the sub-structures such as martensite-packet, -block and -lath.