Soil Microbial Legacy Overrides the Responses of a Dominant Grass and Nitrogen-Cycling Functional Microbes in Grassland Soil to Nitrogen Addition

被引:2
|
作者
Zhang, Minghui [1 ,2 ]
Li, Xueli [1 ,2 ]
Xing, Fu [1 ,2 ]
Li, Zhuo [1 ,2 ]
Liu, Xiaowei [1 ,2 ]
Li, Yanan [1 ,2 ]
机构
[1] Northeast Normal Univ, Inst Grassland Sci, Key Lab Vegetat Ecol,Minist Educ, Jilin Songnen Grassland Ecosyst Natl Observat & R, Changchun 130024, Peoples R China
[2] Northeast Normal Univ, Jilin Prov Key Lab Ecol Restorat & Ecosyst Manage, Changchun 130024, Peoples R China
来源
PLANTS-BASEL | 2022年 / 11卷 / 10期
基金
中国国家自然科学基金;
关键词
Leymus chinensis; soil microbial legacy; grassland succession; nitrogen deposition; soil nitrogen-cycling functional microbes; soil properties; SECONDARY SUCCESSION; COMMUNITY STRUCTURE; LEYMUS-CHINENSIS; SONGNEN PLAIN; N DEPOSITION; PLANT; FEEDBACK; DIVERSITY; FERTILIZATION; RHIZOSPHERE;
D O I
10.3390/plants11101305
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Both atmospheric nitrogen (N) deposition and soil microbial legacy (SML) can affect plant performance, the activity of soil N-cycling functional microbes and the relative abundance of N-cycling functional genes (NCFGs). In the grassland vegetation successional process, how the interaction of SML and N deposition affects the performance of dominant grass and NCFGs remains unclear. Therefore, we planted Leymus chinensis, a dominant grass in the Songnen grassland, in the soil taken from the early, medium, late, and stable successional stages. We subjected the plants to soil sterilization and N addition treatments and measured the plant traits and NCFG abundances (i.e., nifH, AOB amoA, nirS, and nirK). Our results showed the biomass and ramet number of L. chinensis in sterilized soil were significantly higher than those in non-sterilized soil, indicating that SML negatively affects the growth of L. chinensis. However, N addition increased the plant biomass and the AOB amoA gene abundance only in sterilized soils, implying that SML overrode the N addition effects because SML buffered the effects of increasing soil N availability on NCFGs. Therefore, we emphasize the potential role of SML in assessing the effects of N deposition on dominant plant performance and NCFGs in the grassland vegetation succession.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Nitrogen-cycling microbial communities respond differently to nitrogen addition under two contrasting grassland soil types
    Ren, Baihui
    Ma, Xinwei
    Li, Daiyan
    Bai, Long
    Li, Jiahuan
    Yu, Jianxin
    Meng, Meng
    Li, Haoyan
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [2] Global biogeography of microbial nitrogen-cycling traits in soil
    Nelson, Michaeline B.
    Martiny, Adam C.
    Martiny, Jennifer B. H.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (29) : 8033 - 8040
  • [3] Effects of Nitrogen Addition on Potential Soil Nitrogen-Cycling Processes in a Temperate Forest Ecosystem
    Sun, Jianfei
    Peng, Bo
    Li, Wei
    Qu, Guifang
    Dai, Weiwei
    Dai, Guanhua
    Jiang, Ping
    Han, Shijie
    Bai, Edith
    SOIL SCIENCE, 2016, 181 (01) : 29 - 38
  • [4] Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling
    Buchkowski, Robert W.
    Schmitz, Oswald J.
    Bradford, Mark A.
    ECOLOGY, 2015, 96 (04) : 1139 - 1149
  • [5] Responses of soil inhabiting nitrogen-cycling microbial communities to wetland degradation on the Zoige Plateau, China
    Wu Li-sha
    Nie Yuan-yang
    Yang Zhi-rong
    Zhang Jie
    JOURNAL OF MOUNTAIN SCIENCE, 2016, 13 (12) : 2192 - 2204
  • [6] Effects of nitrogen and phosphorus addition on microbial community composition and element cycling in a grassland soil
    Widdig, Meike
    Heintz-Buschart, Anna
    Schleuss, Per-Marten
    Guhr, Alexander
    Borer, Elizabeth T.
    Seabloom, Eric W.
    Spohn, Marie
    SOIL BIOLOGY & BIOCHEMISTRY, 2020, 151
  • [7] Responses of soil inhabiting nitrogen-cycling microbial communities to wetland degradation on the Zoige Plateau, China
    Li-sha Wu
    Yuan-yang Nie
    Zhi-rong Yang
    Jie Zhang
    Journal of Mountain Science, 2016, 13 : 2192 - 2204
  • [8] Responses of soil inhabiting nitrogen-cycling microbial communities to wetland degradation on the Zoige Plateau,China
    WU Li-sha
    NIE Yuan-yang
    YANG Zhi-rong
    ZHANG Jie
    Journal of Mountain Science, 2016, 13 (12) : 2192 - 2204
  • [9] Litter amendment rather than phosphorus can dramatically change inorganic nitrogen pools in a degraded grassland soil by affecting nitrogen-cycling microbes
    Che, Rongxiao
    Qin, Jinling
    Tahmasbian, Iman
    Wang, Fang
    Zhou, Shutong
    Xu, Zhihong
    Cui, Xiaoyong
    SOIL BIOLOGY & BIOCHEMISTRY, 2018, 120 : 145 - 152
  • [10] The Effects of Warming and Nitrogen Addition on Soil Nitrogen Cycling in a Temperate Grassland, Northeastern China
    Ma, Lin-Na
    Lu, Xiao-Tao
    Liu, Yang
    Guo, Ji-Xun
    Zhang, Nan-Yi
    Yang, Jian-Qin
    Wang, Ren-Zhong
    PLOS ONE, 2011, 6 (11):