Double-Network Tough Hydrogels: A Brief Review on Achievements and Challenges

被引:22
|
作者
Xin, Hai [1 ]
机构
[1] Univ Wollongong, ARC Ctr Excellence Elect Sci, Intelligent Polymer Res Inst, Innovat Campus,Squires Way, North Wollongong, NSW 2522, Australia
关键词
double network; toughness; stress relaxation; recoverability; 3D printing; STRESS-RELAXATION BEHAVIOR; MECHANICAL-PROPERTIES; CROSS-LINKING; 1ST NETWORK; STRENGTH; FRACTURE; RECOVERY; STRAIN; MODEL; ADHESIVE;
D O I
10.3390/gels8040247
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This brief review attempts to summarize research advances in the mechanical toughness and structures of double-network (DN) hydrogels. The focus is to provide a critical and concise discussion on the toughening mechanisms, damage recoverability, stress relaxation, and biomedical applications of tough DN hydrogel systems. Both conventional DN hydrogel with two covalently cross-linked networks and novel DN systems consisting of physical and reversible cross-links are discussed and compared. Covalently cross-linked hydrogels are tough but damage-irreversible. Physically cross-linked hydrogels are damage-recoverable but exhibit mechanical instability, as reflected by stress relaxation tests. This remains one significant challenge to be addressed by future research studies to realize the load-sustaining applications proposed for tough hydrogels. With their special structure and superior mechanical properties, DN hydrogels have great potential for biomedical applications, and many DN systems are now fabricated with 3D printing techniques.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Highly conductive and tough double-network hydrogels for smart electronics
    Zhang, Dong
    Tang, Yijing
    Gong, Xiong
    Chang, Yung
    Zheng, Jie
    SMARTMAT, 2024, 5 (02):
  • [2] Mechanically tough double-network hydrogels with high electronic conductivity
    Kishi, Ryoichi
    Kubota, Kazuma
    Miura, Toshiaki
    Yamaguchi, Tomohiko
    Okuzaki, Hidenori
    Osada, Yoshihito
    JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (04) : 736 - 743
  • [3] Construction of Tough, in Situ Forming Double-Network Hydrogels with Good Biocompatibility
    Bu, Yazhong
    Shen, Hong
    Yang, Fei
    Yang, Yanyu
    Wang, Xing
    Wu, Decheng
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (03) : 2205 - 2212
  • [4] Polyacrylamide/Alginate double-network tough hydrogels for intraoral ultrasound imaging
    Yi, Jiaqiang
    Nguyen, Kim-Cuong T.
    Wang, Wenda
    Yang, Wenshuai
    Pan, Mingfei
    Lou, Edmond
    Major, Paul W.
    Le, Lawrence H.
    Zeng, Hongbo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 578 : 598 - 607
  • [5] Tough Physical Double-Network Hydrogels Based on Amphiphilic Triblock Copolymers
    Zhang, Hui Jie
    Sun, Tao Lin
    Zhang, Ao Kai
    Ikura, Yumihiko
    Nakajima, Tasuku
    Nonoyama, Takayuki
    Kurokawa, Takayuki
    Ito, Osamu
    Ishitobi, Hiroyuki
    Gong, Jian Ping
    ADVANCED MATERIALS, 2016, 28 (24) : 4884 - 4890
  • [6] Large strain hysteresis and mullins effect of tough double-network hydrogels
    Webber, Rebecca E.
    Creton, Costantino
    Brown, Hugh R.
    Gong, Jian Ping
    MACROMOLECULES, 2007, 40 (08) : 2919 - 2927
  • [7] Tough Antibacterial Metallopolymer Double-Network Hydrogels via Dual Polymerization
    Hwang, JiHyeon
    Cha, Yujin
    Ramos, Luis
    Zhu, Tianyu
    Kurnaz, Leman Buzoglu
    Tang, Chuanbing
    CHEMISTRY OF MATERIALS, 2022, 34 (12) : 5663 - 5672
  • [8] Fatigue of double-network hydrogels
    Zhang, Wenlei
    Liu, Xiao
    Wang, Jikun
    Tang, Jingda
    Hu, Jian
    Lu, Tongqing
    Suo, Zhigang
    ENGINEERING FRACTURE MECHANICS, 2018, 187 : 74 - 93
  • [9] A Universal Soaking Strategy to Convert Composite Hydrogels into Extremely Tough and Rapidly Recoverable Double-Network Hydrogels
    Yang, Yanyu
    Wang, Xing
    Yang, Fei
    Shen, Hong
    Wu, Decheng
    ADVANCED MATERIALS, 2016, 28 (33) : 7178 - +
  • [10] Injectable and Cytocompatible Tough Double-Network Hydrogels through Tandem Supramolecular and Covalent Crosslinking
    Rodell, Christopher B.
    Dusaj, Neville N.
    Highley, Christopher B.
    Burdick, Jason A.
    ADVANCED MATERIALS, 2016, 28 (38) : 8419 - 8424