Modelling the effects of oxygen evolution in the all-vanadium redox flow battery

被引:207
|
作者
Al-Fetlawi, H. [1 ]
Shah, A. A. [1 ]
Walsh, F. C. [1 ]
机构
[1] Univ Southampton, Sch Engn Sci, Energy Technol Res Grp, Southampton SO17 1BJ, Hants, England
关键词
Redox flow battery; Oxygen evolution; Bubble formation; Mathematical model; Temperature; MASS-TRANSFER; 2-PHASE FLOW; GAS-BUBBLES; DIFFUSION; ELECTRODES; WATER; CONVECTION;
D O I
10.1016/j.electacta.2009.12.085
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The impact of oxygen evolution and bubble formation on the performance of an all-vanadium redox flow battery is investigated using a two-dimensional, non-isothermal model. The model is based on mass, charge, energy and momentum conservation, together with a kinetic model for the redox and gas-evolving reactions. The multi-phase mixture model is used to describe the transport of oxygen in the form of gas bubbles. Numerical simulations are compared to experimental data, demonstrating good agreement. Parametric studies are performed to investigate the effects of changes in the operating temperature, electrolyte flow rate and bubble diameter on the extent of oxygen evolution. Increasing the electrolyte flow rate is found to reduce the volume of the oxygen gas evolved in the positive electrode. A larger bubble diameter is demonstrated to increase the buoyancy force exerted on the bubbles, leading to a faster slip velocity and a lower gas volume fraction. Substantial changes are observed over the range of reported bubble diameters. Increasing the operating temperature was found to increase the gas volume as a result of the enhanced rate of O-2 evolution. The charge efficiency of the cell drops markedly as a consequence. (C) 2010 Published by Elsevier Ltd.
引用
收藏
页码:3192 / 3205
页数:14
相关论文
共 50 条
  • [1] Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery
    Shah, A. A.
    Al-Fetlawi, H.
    Walsh, F. C.
    ELECTROCHIMICA ACTA, 2010, 55 (03) : 1125 - 1139
  • [2] Thermal modelling and simulation of the all-vanadium redox flow battery
    Tang, Ao
    Ting, Simon
    Bao, Jie
    Skyllas-Kazacos, Maria
    JOURNAL OF POWER SOURCES, 2012, 203 : 165 - 176
  • [3] Membranes for All-Vanadium Redox Flow Battery
    Zhang Yaping
    Chen Yan
    Zhou Yuanlin
    He Ping
    PROGRESS IN CHEMISTRY, 2010, 22 (2-3) : 384 - 387
  • [4] Non-isothermal modelling of the all-vanadium redox flow battery
    Al-Fetlawi, H.
    Shah, A. A.
    Walsh, F. C.
    ELECTROCHIMICA ACTA, 2009, 55 (01) : 78 - 89
  • [5] Electrolyte for All-Vanadium Redox Flow Battery
    Wang Gang
    Chen Jinwei
    Wang Xueqin
    Tian Jing
    Liu Xiaojiang
    Wang Ruilin
    PROGRESS IN CHEMISTRY, 2013, 25 (07) : 1102 - 1112
  • [6] Performance of the all-vanadium redox flow battery stack
    Park, Dong-Jun
    Jeon, Kwang-Sun
    Ryu, Cheol-Hwi
    Hwang, Gab-Jin
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 45 : 387 - 390
  • [7] CHARACTERISTICS OF A NEW ALL-VANADIUM REDOX FLOW BATTERY
    RYCHCIK, M
    SKYLLAS-KAZACOS, M
    JOURNAL OF POWER SOURCES, 1988, 22 (01) : 59 - 67
  • [8] Anion effects on the redox kinetics of positive electrolyte of the all-vanadium redox flow battery
    Holland-Cunz, Matthaa Verena
    Friedl, Jochen
    Stimming, Ulrich
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 819 : 306 - 311
  • [9] Activation of Carbon Electrodes for All-Vanadium Redox Flow Battery
    Wang Gang
    Chen Jinwei
    Zhu Shifu
    Zhang Jie
    Liu Xiaojiang
    Wang Ruilin
    PROGRESS IN CHEMISTRY, 2015, 27 (10) : 1343 - 1355
  • [10] Effect of flow field on the performance of an all-vanadium redox flow battery
    Kumar, S.
    Jayanti, S.
    JOURNAL OF POWER SOURCES, 2016, 307 : 782 - 787