MSPM: A modularized and scalable multi-agent reinforcement learning-based system for financial portfolio management

被引:10
|
作者
Huang, Zhenhan [1 ]
Tanaka, Fumihide [2 ]
机构
[1] Univ Tsukuba, Grad Sch Sci & Technol, Tsukuba, Ibaraki, Japan
[2] Univ Tsukuba, Fac Engn Informat & Syst, Tsukuba, Ibaraki, Japan
来源
PLOS ONE | 2022年 / 17卷 / 02期
关键词
D O I
10.1371/journal.pone.0263689
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Financial portfolio management (PM) is one of the most applicable problems in reinforcement learning (RL) owing to its sequential decision-making nature. However, existing RL-based approaches rarely focus on scalability or reusability to adapt to the ever-changing markets. These approaches are rigid and unscalable to accommodate the varying number of assets of portfolios and increasing need for heterogeneous data input. Also, RL agents in the existing systems are ad-hoc trained and hardly reusable for different portfolios. To confront the above problems, a modular design is desired for the systems to be compatible with reusable asset-dedicated agents. In this paper, we propose a multi-agent RL-based system for PM (MSPM). MSPM involves two types of asynchronously-updated modules: Evolving Agent Module (EAM) and Strategic Agent Module (SAM). An EAM is an information-generating module with a Deep Q-network (DQN) agent, and it receives heterogeneous data and generates signal-comprised information for a particular asset. An SAM is a decision-making module with a Proximal Policy Optimization (PPO) agent for portfolio optimization, and it connects to multiple EAMs to reallocate the corresponding assets in a financial portfolio. Once been trained, EAMs can be connected to any SAM at will, like assembling LEGO blocks. With its modularized architecture, the multi-step condensation of volatile market information, and the reusable design of EAM, MSPM simultaneously addresses the two challenges in RL-based PM: scalability and reusability. Experiments on 8-year U.S. stock market data prove the effectiveness of MSPM in profit accumulation by its outperformance over five different baselines in terms of accumulated rate of return (ARR), daily rate of return (DRR), and Sortino ratio (SR). MSPM improves ARR by at least 186.5% compared to constant rebalanced portfolio (CRP), a widely-used PM strategy. To validate the indispensability of EAM, we back-test and compare MSPMs on four different portfolios. EAM-enabled MSPMs improve ARR by at least 1341.8% compared to EAM-disabled MSPMs.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] MSPM: A modularized and scalable multi-agent reinforcement learning-based system for financial portfolio management (vol 17, e0263689, 2022)
    Huang, Zhenhan
    Tanaka, Fumihide
    PLOS ONE, 2022, 17 (03):
  • [2] MAPS: Multi-agent Reinforcement Learning-based Portfolio Management System
    Lee, Jinho
    Kim, Raehyun
    Yi, Seok-Won
    Kang, Jaewoo
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 4520 - 4526
  • [3] Scalable Multi-Agent Reinforcement Learning-Based Distributed Channel Access
    Chen, Zhenyu
    Sun, Xinghua
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 453 - 458
  • [4] Backdoor Attacks on Multi-Agent Reinforcement Learning-based Spectrum Management
    Zhang, Hongyi
    Liu, Mingqian
    Chen, Yunfei
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 3361 - 3365
  • [5] Multi-agent Reinforcement Learning-based Network Intrusion Detection System
    Tellache, Amine
    Mokhtari, Amdjed
    Korba, Abdelaziz Amara
    Ghamri-Doudane, Yacine
    PROCEEDINGS OF 2024 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM, NOMS 2024, 2024,
  • [6] Investment Biases in Reinforcement Learning-based Financial Portfolio Management
    Huang, Zhenhan
    Tanaka, Fumihide
    2022 61ST ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS (SICE), 2022, : 494 - 501
  • [7] Knowledge distillation for portfolio management using multi-agent reinforcement learning
    Chen, Min-You
    Chen, Chiao-Ting
    Huang, Szu-Hao
    ADVANCED ENGINEERING INFORMATICS, 2023, 57
  • [8] Reinforcement learning-based multi-agent system for network traffic signal control
    Arel, I.
    Liu, C.
    Urbanik, T.
    Kohls, A. G.
    IET INTELLIGENT TRANSPORT SYSTEMS, 2010, 4 (02) : 128 - 135
  • [9] Quantum Finance and Fuzzy Reinforcement Learning-Based Multi-agent Trading System
    Cheng, Chi
    Chen, Bingshen
    Xiao, Ziting
    Lee, Raymond S. T.
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2024, 26 (07) : 2224 - 2245
  • [10] Scalable Reinforcement Learning Policies for Multi-Agent Control
    Hsu, Christopher D.
    Jeong, Heejin
    Pappas, George J.
    Chaudhari, Pratik
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4785 - 4791