Balancing Electrolyte Donicity and Cathode Adsorption Capacity for High-Performance Li-S Batteries

被引:7
|
作者
Kim, Kiwon [1 ]
Kim, Taeyoung [1 ]
Moon, Jun Hyuk [1 ]
机构
[1] Sogang Univ, Inst Emergent Mat, Dept Chem & Biomol Engn, Baekbeom Ro 35, Seoul 04107, South Korea
关键词
density functional theory calculations; high donicity electorolytes; lithium polysulfide adsorption; lithium sulfide growth; lithium sulfur batteries; LITHIUM-SULFUR BATTERIES; ELECTROCHEMICAL REDUCTION; BLUE SOLUTIONS; THIN-FILMS; DONOR; POLYSULFIDES; CONVERSION; NANOSHEET; KINETICS; OXIDE;
D O I
10.1002/smll.202201416
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li-S batteries with high theoretical capacity are attracting attention as next-generation energy storage systems. Much effort has been devoted to the introduction of cathode materials with strong adsorption to sulfide species, but it is presented that this selection should be refined in the application of high donicity electrolytes. The oxides with different adsorption capacities are explored while controlling the electrolyte donicity, confirming the trade-off effect between the donicity and the adsorption capacity for sulfur conversion. Specifically, a cathode substrate containing oxide nanoparticles of MgO, NiO, Fe2O3, Co3O4, and V2O5 is prepared with spectra in adsorption capacity as well as low and high donicity electrolytes by controlling the concentration of LiNO3 salt. Strong adsorbent oxides such as Co3O4 and V2O5 cause competitive adsorption of electrolyte salts in high donicity electrolytes, resulting in poor cell performance. High cell performance is achieved on weakly adsorbing oxides of MgO or NiO with high donicity electrolytes; the MgO-containing cathode cell delivers a high discharge capacity of 1394 mAh g(-1) at 0.2 C. It is believed that understanding the interactions between electrolytes and adsorbent substrates will be the cornerstone of high-performance Li-S batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Balancing Adsorption, Catalysis, and Desorption in Cathode Catalyst For Li-S Batteries
    Zhang, Wei
    Pan, Hui
    Han, Ning
    Feng, Shihui
    Zhang, Xuan
    Guo, Wei
    Tan, Pingping
    Xie, Sijie
    Zhou, Zhenyu
    Ma, Qianru
    Guo, Xiaolong
    Vlad, Alexandru
    Wubbenhorst, Michael
    Luo, Jiangshui
    Fransaer, Jan
    ADVANCED ENERGY MATERIALS, 2023, 13 (43)
  • [2] High capacity cathode materials for Li-S batteries
    Ryu, Ho Suk
    Park, Jin Woo
    Park, Jinsoo
    Ahn, Jae-Pyeung
    Kim, Ki-Won
    Ahn, Jou-Hyeon
    Nam, Tae-Hyeon
    Wang, Guoxiu
    Ahn, Hyo-Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (05) : 1573 - 1578
  • [3] High areal capacity cathode and electrolyte reservoir render practical Li-S batteries
    Qin, Furong
    Wang, Xiwen
    Zhang, Kai
    Fang, Jing
    Li, Jie
    Lai, Yanqing
    NANO ENERGY, 2017, 38 : 137 - 146
  • [4] Essential Features of Electrolyte Solvents that Enable High-Performance Li-S Batteries
    Kang, Jin Kyeong
    Kim, Tae Jeong
    Park, Jong Won
    Jung, Yongju
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2019, 40 (06) : 566 - 571
  • [5] Electrodeposited Sulfur and CoxS Electrocatalyst on Buckypaper as High-Performance Cathode for Li-S Batteries
    Yi Zhan
    Andrea Buffa
    Linghui Yu
    Zhichuan J.Xu
    Daniel Mandler
    Nano-Micro Letters, 2020, 12 (10) : 267 - 279
  • [6] Sulfur Nanodots Electrodeposited on Ni Foam as High-Performance Cathode for Li-S Batteries
    Zhao, Qing
    Hu, Xiaofei
    Zhang, Kai
    Zhang, Ning
    Hu, Yuxiang
    Chen, Jun
    NANO LETTERS, 2015, 15 (01) : 721 - 726
  • [7] Sulfur cathode based on layered carbon matrix for high-performance Li-S batteries
    Wu, Feng
    Qian, Ji
    Chen, Renjie
    Zhao, Teng
    Xu, Rui
    Ye, Yusheng
    Li, Wenhui
    Li, Li
    Lu, Jun
    Amine, Khalil
    NANO ENERGY, 2015, 12 : 742 - 749
  • [8] Electrodeposited Sulfur and CoxS Electrocatalyst on Buckypaper as High-Performance Cathode for Li-S Batteries
    Zhan, Yi
    Buffa, Andrea
    Yu, Linghui
    Xu, Zhichuan J.
    Mandler, Daniel
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [9] Theoretical investigation on lithium polysulfide adsorption and conversion for high-performance Li-S batteries
    Li, Jianbo
    Qu, Yanru
    Chen, Chunyuan
    Zhang, Xin
    Shao, Mingfei
    NANOSCALE, 2021, 13 (01) : 15 - 35
  • [10] Effective polysulfide adsorption and catalysis by polyoxometalate contributing to high-performance Li-S batteries
    Song, Jian
    Jiang, Yuanyuan
    Lu, Yizhong
    Wang, Mingliang
    Cao, Yundong
    Fan, Linlin
    Liu, Hong
    Gao, Guanggang
    MATERIALS TODAY NANO, 2022, 19